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PREFACE TO THE
ANNOTATED EDITION

The technical literaturc devoted to perturbation methods in me-
chanics has burgeoned since this book appeared in 1964. Techniques
for treating singular perturbation problems, then unfamiliar and
esoteric, are now part of the analytical apparatus of anyone intercsted
in rescarch. Applications in continuum mechanics, first limited
mainly to classical fluid dynamics and linear elasticity, have spread
over a wide range of fields, and new techniques are being developed
while older ones are refined. The resulting research papers, even if
restricted to fluid mechanics, number in the thousands.

Other books have meanwhile appeared to codify and guide this
body of work. Those of an applied character similar to this one are the
books of Bellman (1964), Cole (1968), and Navfeh (1973). More
mathematically oriented treatments include O’Malley (1968, 1974)
and Eckhaus (1973).

Despite that competition, and a limited scope, the present book has
apparently remained useful. Its modest sales continued until its even
more modest price made it unprofitable for the original publisher to
keep it in print. Rather than let the price increase, I have elected to
republish i1t myself.

In so doing, I have taken the opportunity to correct a number of
error in the text, and to bring it more up to date by adding a section of
Notes at the end. These are keyed to the main text, where an indicator
in the margin of the page, of the form shown here, directs the reader
to a discussion of subsequent developments and further references.
Of course only a small fraction of the papers published in the past
decade have been mentioned, even though the list of References at the
end has been doubled. However, an attempt has been made to in-
clude any reference that provides a significant new idea or result, as
well as any of close relevance to the original text.

The most common criticism from reviewers and readers (aside from
the restriction to fluid mechanics) is that this book is somewhat too
concise for self study or use as a text. It has, nevertheless, been used
as the textbook for more college courses than I could have anticipated.
For that purpose, the Exercises posed at the end of each chapter are

xi
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xii Preface

in some cases rather too demanding (and in a few cases practically
insoluble). T have tried to improve this situation in Note 3. On re-
quest, I should be glad to provide colleagues with my versions of the
solutions, together with additional excrcises I have used in recent
years.

This Annotated Edition, like the original, derives from a one-
quarter graduate course that I have continued to teach in the Depart-
ment of Aeronautics and Astronautics at Stanford University since
1959. Like the original, it draws on my research and that of my stu-
dents, which has been supported for many years by the Air Force
Office of Scientific Research.

[ am indebted to a number of colleagues who answered my plea
for help with the Notes, or otherwise contributed corrections, sugges-
tions, and references. Of course I could not do justice to all their sug-
gestions, but for valuable assistance I thank A. Acrivos, S. A. Berger.
P. A. Bois, S. N. Brown, S. Corrsin, R. T. Davis. C. Domb, J. Ellin-
wood, L. E. Fraenkel, C. Frangois, P. Germain, C. R. Illingworth,
K. P. Kerney, P. A. Lagerstrom, R. E. Melnik, A. Messiter, R. Medan,
J. W. Miles, N. Riley, O. S. Ryzhov, V. V. Sychev, and H. Viviand.

The fraternity of tvpographers, printers, publishers, and booksellers
is a friendly one, and I have found them all remarkably generous in
helping a neophyte. I could not have undertaken to republish this
book myself without the advice of Sharon Hawkes, Jack McLean,
Eva Nyquist, Dorothy Riedel, and especially my friends John McNeil
and William Kauffman at Annual Reviews Inc. Like the original, this
revision could not have been written without the help and encourage-
ment of my wife Sylvia, and I rededicate it to her as a gift of love.

Mirton Van DyYkE
Stanford, California
SJune, 1975

PREFACE TO
THE ORIGINAL EDITION

This book is devoted primarily to the treatment of singular perturba-
tion problems as they arise in fluid mechanics. In particular, it gives a
unified exposition of two rather general techniques that have been
developed during the last fifteen years, and which are associated
with the names of Iagerstrom, Kaplun, and Cole, and of Lighthill
and Whitham. This emphasis on what might to the uninitiated
appear to be the pathological aspects of perturbation theory is justified
not so much by the novelty of these techniques as by the fact that singular
perturbations seem to be the rule rather than the exception in fluid
mechanics, and are being increasingly encountered in current research.
However, the book begins with general methods applicable to regular
as well as singular perturbations, because no connected account of them
is available.

The exposition is largely by means of examples, and these are—
except for a few mathematical models —drawn solely from fluid mechanics.
It is true that the techniques discussed are rapidly finding application
in other branches of applied mechanics, and I hope the book will prove
useful to workers in those fields. However, both of the general techniques
mentioned above were invented to handle problems in fluid flow, and
have been largely developed and applied within that field. In fact, the
examples are largely confined to what might at mid-century be charac-
terized as classical aerodynamics. It is evident, however, that singular
perturbation problems abound in such new subjects as non-equilibrium
and radiating flows, magnetohydrodynamics, plasma dynamics, and
rarefied-gas dynamics. The techniques discussed will certainly find
fruitful application there, as well as in oceanography, meteorology, and
other domains of the great world of fluid motion.

This book is the outgrowth of a succession of notes prepared for a
graduate course that I have taught since 1959 in the Department of
Aeronautics and Astronautics at Stanford University. It naturally draws
heavily on my own research and that of my students, much of which
has been supported by the Air Force Office of Scientific Research.

The heart of the book is the study, in Chapter IV, of incompressible
potential flow past a symmetrical thin airfoil. This problem, though

X iii



xiv Preface to Original Edition

conceptually simple and involving only the two-dimensional Laplace
equation, embodies most of the features of both regular and singular
perturbations. In particular, it serves to introduce the two standard
methods of treating singular perturbation problems. References to this
basic problem therefore recur throughout the subsequent chapters.

I would urge the reader not to ignore the exercises. They provide
in concise form many additional details, further references, and generali-
zations and extensions of the material in the text.

My first debt is to P. A. Lagerstrom, who has been my teacher,
colleague, and friend as well as the co-developer of one of the two
main techniques described here for handling singular perturbation
problems. Many of the ideas presented also bear the imprint of my
vears of collaboration with R. T. Jones, M. A. Heaslet, and their
colleagues at Ames Laboratory. I am indebted to a number of other
colleagues for helpful comments and criticism, including in particular
O. Burggraf, I-Dee Chang, G. Emanucl, S. Kaplun, 5. Nadir, B. Perry,
and A. F. Pillow. This book would not have been written without the
help and encouragement of my wife Sylvia, and I dedicate it to her as
a gift of love.

AMintox Vax DykE
Stanford, California
May, 1964

Chapter 1

THE NATURE
OF PERTURBATION THEORY

1.1. Approximations in Fluid Mechanics

Fluid mechanics has pioncered in the solution of nonlinear partial
differential equations. In contrast with the basic equations in many other
branches of mathematical physics, those governing fluid motion are
essentially nonlinear (more precisely, quasi-linear); and this i1s true
whether or not viscosity and compressibility are included. The only
important exception is the well explored case of irrotational motion of
an incompressible inviscid fluid, which leads to Laplace’s equation, the
nonlinearity then appearing only algebraically in the Bernoulli equation,
provided there are no free boundaries.

Because of this basic nonlinearity, exact solutions are rare in any
branch of fluid mechanics. They are usually self-similar solutions, for
which the partial differential equations reduce, by virtue of a high degree
of symmetry, to ordinary differential equations. So great is the need
that a solution is loosely termed ‘‘exact” even when an ordinary
differential equation must be integrated numerically. Lighthill (1948)
has given a more or less exhaustive list of such solutions for inviscid
compressible flow:

(a) steady supersonic flow past a concave corner,

(b) steady supersonic flow past a convex corner,

(c) steady supersonic flow past an unyawed circular cone,
(d) infinite plane wall moved impulsively into still air,

(e) infinite plane wall moved impulsively away from still air,
(

(g

~

circular cylinder expanding uniformly into still air,
sphere expanding uniformly into still air.

\_/\—/\_/

Again, from Schlichting (1960) one can construct a partial list for
incompressible viscous flow:

(a) steady flow between infinite parallel plates, through a circular
pipe, or between concentric circular pipes,

1



2 I. The Nature of Perturbation Theory

(b) steady flow between a fixed and a sliding parallel plate or concentric
circular pipe,

steady flow between concentric rotating cylinders,

plane or axisymmetric flow against an infinite plate,

steady rotation of an infinite flat disk,

steady plane flow between divergent plates,

impulsive or sinusoidal motion of an infinite flat plate in its own
plane.

s )
[oRN ]

o
~—~—

It is typical of these self-similar flows that they involve idealized geom-
etries far from most shapes of practical interest.

To proceed further, one must usually approximate. (A recent alter-
native is to launch an electronic computing program!) Approximation
is an art, and famous names are usually associated with successful
approximations:

Prandtl wing theory,

Karman-Tsien method for airfoils in subsonic flow,
Prandtl-Glauert approximation for subsonic flow,
Janzen-Rayleigh expansion for subsonic flow,
Stokes and Oseen approximations for viscous flow,
Prandtl boundary-layer theory,

Kdrmén-Pohlhausen boundary-layer approximation,
Newton-Busemann theory of hypersonic flow.

In some important fields an altogether successful approximation is yet to
be found. Examples are separated viscous flow, and hypersonic flow
past a blunt body.

1.2. Rational and Irrational Approximations

Most useful approximations are valid when one or more of the
parameters or variables in the problem is small (or large). This pertur-
bation quantity is often one of the dimensionless parameters:

Janzen-Rayleigh expansion: Mach number

Thin-airfoil theory: Thickness ratio
Lifting-line theory: Aspect ratio
Stokes, Oseen flow: Reynolds number
Reynolds number
Mach number > 1, (y — 1) <

Reduced frequency

Boundary-layer theory:
Newton-Busemann theory:

Quasi-steady theory:

VAAY AV AA

Free-molecule theory: Knudsen number

1.2. Rational and Irrational Approximations 3

An unusual example is Garabedian’s (1956) analysis of axisymmetric
free-streamline flow, which is based upon the approximation that the
number of space dimensions differs only slightly from two. In all these
cases onc speaks of a parameter perturbation. 'The perturbation quantity
may also be one of the independent variables (in dimensionless form):

Blasius series for boundary layer: Distance << 1
Impulsive motion in viscous or

compressible fluid: Time < 1

In such cases one speaks of a coordinate perturbation.

An approximation of this sort becomes increasingly accurate as the
perturbation quantity tends to zero (or infinity). It is therefore an
asymptotic solution. In principle, one can improve the result by embedding
it as the first step in a systematic scheme of successive approximations.
The resulting series, though not necessarily convergent, is by construc-
tion an asymptotic expansion. In practice, one usually calculates only
the first approximation, sometimes the second. The chief virtue of a
second approximation is often that it helps to understand the first. Only
rarely does one proceed as far as the fifth or sixth approximation; but
the possibility of continuing indefinitely is of fundamental significance.
We shall call an approximation of this sort a rational approximation.

On the other hand, some very useful approximations do not become
exact in any known limit. Examples are:

Kérmén-Tsien method for airfoils in subsonic flow (Liepmann and
Puckett, 1947, p. 176),

Shock-expansion theory, and its extension to axisymmetric and three-
dimensional flows (Hayes and Probstein, 1959, p. 265),

Spreiter’s local linearization in transonic flow (Spreiter, 1959),

Chester-Chisnell theory of shock dynamics (Chester, 1960),

Mott-Smith theory of shock structure (Mott-Smith, 1951).

We shall call such a method an érrational approximation. Unless further
study should reveal its asymptotic nature, an irrational approximation
represents a dead end. One must accept whatever error it involves, with
no possibility of improving the accuracy by successive approximations.

Only rational approximations are considered in this book. Thus we
are concerned with asymptotic expansions, for small or large values of
some parameter or independent variable, of the solutions of the equations
of fluid motion.

We will often find it convenient to denote the perturbation quantity
by e, and to define it so that it is small. For example, in boundary-layer




4 I. The Nature of Perturbation Theory
theory ¢ can be taken as the reciprocal of the Reynolds number, or of
its square root.

As e tends to zero, the flow must be assumed to approach a limit,
which may be termed the basic solution. For example, at high Reynolds
numbers the viscous flow past most semi-infinite bodies approaches the
corresponding inviscid motion. That this approach is not uniform is
clear from the ideas of boundary-layer theory. However, for bodies on
which the boundary layer scparates, we do not yet know the appropriate
limit—or, indeed, whether a limit exists (cf. Section 7.1).

In parameter perturbations the basic solution is often a uniform parallel
stream or other trivial flow. Then one usually regards it as the “zeroth
approximation,” and calls the leading perturbation therefrom the first
approximation or first-order solution. In most coordinate perturbations,
on the other hand, the basic solution is a nontrivial solution of the full
equations—for example, one of the self-similar flows discussed
previously—and is itself usually regarded as the first approximation.

1.3. Examples of Perturbation Expansions

These general remarks may be illustrated by exhibiting some typical
perturbation expansions for which a number of terms have been
calculated by assiduous researchers. In the Janzen-Rayleigh or A>-
expansion method, the effects of compressibility at subsonic speeds are
studied by perturbing the basic solution for incompressible flow. The
first-order correction is proportional to the square of the free-stream
Mach number M, and higher approximations procced by successive
powers of 12 Simasaki (1956) has calculated six terms of the series for
subsonic flow past a circular cylinder without circulation. For the
maximum speed gmax—which occurs on the surface at the ends of the
cross-stream diameter—referred to the free-stream speed U, he finds,
with the adiabatic index y equal to 1.405:

iL— = 2.00000 - 1.16667M2 - 2.58129M1*

— 7.53386M¢ + 25.69342M° — 96.79287 M + - (1.1)

'This method is believed to yield a series that converges if the flow is
purely subsonic. (A proof of convergence for sufficiently small M? was
reported by Wendt (1948), but never published.) Indeed, it appears from
the behavior of the above coeflicients that the convergence becomes
suspect when M approaches its critical value of about 0.40, at which
gmax becomes sonic (cf. Exercise 10.6).

See
Note

e

1.3. Examples of Perturbation Expansions 5

In thin-airfoil or slender-body theory, the solution for an elongated
object is found as the perturbation of a uniform stream. Hantzsche
(1943) has calculated the thin-airfoil expansion for an elliptic airfoil of
thickness ratio & at zero incidence in a subsonic compressible stream,
For the maximum speed he finds

Jmax 1 M? .
=14 e - —(1 = 2
T - ,88 25 (1 +I)e
M7 1 2 13 4 2l 3
i —/BT IZ[I = Il - I — M%) — 5 — ;zlw*gf 58
M 1 \ 2\ 4 1
'73_1_,[] -5 D1+ )8 — MP)]etloge -+ O(e?) (1.2a)
where
—_— —1 M
B = V1 — M2, I = 7’_4_ -__[32 (1.2b)

Here, and throughout this book, log denotes the natural logarithm. In
(1.2 a) as in many perturbation problems, logarithms of the perturbation
quantity appear unexpectedly. For reasons discussed in Section 10.5,
the unknown next term, which is indicated to be of order ¢!, ought to
be included with the term in ¢* log ¢ as the fourth approximation.

At low Reynolds numbers the viscous flow past a three-dimensional
body is described by the Stokes approximation. For bodies with fore-and-
aft symmetry a better estimate of the drag is given by the Oseen
approximation. Goldstein (1929) has calculated six terms of a series for
the Oscen drag of a sphere. In terms of the Reynolds number R = Ua v
based upon the radius «, his result for the drag coefhicient is

b br 3 19 5 T
CD*pUnzag* R (1 ; 8R ~3_2‘6R +2—56—0R
0,179 . 12519 .
~ 5150400 B Tasan B E ) (4

Here the last coefficient has been corrected by Shanks (1955). The
solution of the full Navier-Stokes equations departs from the Oseen
approximation after the second term. According to the work of Proudman
and Pearson (1957) it gives instead

3 9 o 9
Cp = p-[1+ gR + 5 R g R + O(RY) (1.4)

See
Note

See
Note
10



6 I. The Nature of Perturbation Theory

At high Reynolds numbers the viscous flow very close to a body 1s
described by Prandtl’s boundary-layer equations. Because they are
nonlinear, additional approximations are usually required. A coordinate
perturbation for small distances from the stagnation point of any smooth
symmetrical plane shape, initiated by Blasius, has been carried to six
terms by Tifford (1954). For the coefficient of local skin friction on a
parabola this gives (Van Dyke, 1964a)

T 2 x f a3 x40

el § B S 193186 (—) - 3.11051 (=

VR [1.23259% —1.93186 (] (=)
,,75.02892(%)7f8.14109 (%’)9 — 13.18662 (%)“ - ] (1.5)

Here v is the distance along the surface, and R again the Reynolds number
based upon the nose radius a.

Incompressible flow past a thin wing of high aspect ratio . is described
approximately by Prandtl’s lifting-line theory. The calculation of
higher approximations is discussed in Chapter 9. For an elliptical wing
the lift-curve slope is found to be (Van Dyke, 1964b)

ac, 2 16logd
PR U I
4 .7 . 1
— ly s dega) o — ] (1:6)

‘The notoriously difficult problem of hypersonic flow past a blunt
body has been attacked, in the Newton-Busemann approximation, by
expanding in powers of 1 32 and (y — 1) (y - 1). Chester (1956b) has
carried the series farthest for the body of revolution that produces a
paraboloidal shock wave. At 3/ — =« he finds the ratio of the stand-off
distance 4 of the shock wave to its nose radius b to be

3/2

4 y—1 {y—fl}-AHM;l) 463 f’é(y41)'lffm (L)

D oy 3y —1 ?(yu 168 V3l 51

In later chapters we shall have something further to say about each of
these examples.

1.4. Regular and Singular Perturbation Problems

Under the happiest circumstances, a perturbation solution leads to
altogether satisfactory results. T'he series cannot often be presumed to

See
Note
12

See
Note
13

1.4. Regular and Singular Perturbation Problems 7

converge, particularly for parameter perturbations. Nevertheless, its
asymptotic nature means that a few terms may vield ample accuracy,
for reasonably small ¢, everywhere in the flow field. Such uniform validity
appears to be true, for example, of the Janzen-Rayleigh expansion below
the critical Mach number. One speaks then of a regular perturbation
problem.

On the other hand, one may find that the straightforward perturbation
solution is not uniformly valid throughout the flow field. The best
known example 1s unseparated viscous flow at high Reynolds numbers,
where a perturbation of the basic inviscid motion fails near the surface,
and must be supplemented by the boundary-laver approximation. Not
only does the first approximation break down locally in such cases, but
the dithculty is compounded in higher approximations —if they can be
calculated at all --so that in the region of non-uniformity the solution
grows worse rather than better. One then speaks of a singular perturbation
problem.

Singular perturbation problems arise frequently in fluid mechanics.
They have been studied increasingly in the recent literature as the requi-
sitc mathematical techniques were developed. Fresh insight is gained
into even some classical problems by recognizing their singular nature.
For these reasons this book is largelv devoted to singular perturbation
problems.

T'wo more or less general methods have recently been developed for
treating singular perturbation problems. One is a generalization of the
notions of boundarv-laver theory, which we call the method of matched
asymptotic expansions. 'The other is the extension of an idea due to
Poincaré, which we call the method of strained coordinates. Nlathematical
justification of these two procedures is in its infancy. Therefore no
precise statements can be made as to when either of them can be applied,
as to whichis preferable in a given problem, or as to how the two
methods are related. Nevertheless, we will attempt to gain some insight
into these questions by studying a variety of illustrative examples. In
some cases, ordinary differential equations will be adopted as simple
models to demonstrate the essential points. Whenever possible,
however, we draw our examples from the recent literature in fluid
mechanics, so that partial differential equations are usually encoun-
tered.

Because we are concerned with techniques having some generality of
application, our examples will—as in the results already quoted—be
taken from the theories of both inviscid and viscous flows, and for speeds
ranging from incompressible to hypersonic. The reader is assumed to
understand the physical bases of those problems, which will often
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illuminate the mathematics. He 1s also expected to be familiar with the
elementary processes of analysis, the basic theory of partial differential
equations, and the fundamental notions of complex-variable theory,
including in particular the grand concept of the complete description of
an analytic function that results from the process of analytic continuation.

Chapter 11

SOME REGULAR
PERTURBATION PROBLEMS

2.1. Introduction; Basic Flow past a Circle

We illustrate some of the techniques of perturbation theory by
considering first several related regular perturbation problems. These
techniques will be svstematized in the next chapter. The complications
associated with singular perturbations are deferred to later chapters.

Because exact solutions are rare, one cherishes them, and seeks to
exploit them as fullv as possible. Thus a single exact solution is often
perturbed in a number of wavs, to explore different cffects. In the usual
acrodynamic problem of unbounded flow past a body, one may perturb

(1) the distant boundary conditions, far upstream,
(i1) the ncar boundary conditions, at the body surface,
(ii1) the equations of motion,

and each of these possibilities may in turn be carried out in a variety of
ways. IFor example, the exact inviscid solution for supersonic flow past
a circular cone has been perturbed as in (1) to study the effects of

(a) angle of attack (Stone, 1948),
(b) pitching motion (Kawamura and 'I'sien, 1964),
as in (ii) for the effects of

(c) initial curvature of an ogival tip (Cabannes, 1951),
(d) departure from circular cross section (Ferri et al., 1953),

(e) slight blunting (Yakura, 1962),
and as in (iii) for the effects of
(f) slight viscosity (Hantzsche and Wendt, 1941).

To illustrate these possibilities without excessive calculation, we adopt
as our basic solution the steady plane motion of an incompressible

9
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inviscid fluid past a circle without circulation (Fig. 2.1). It is convenient
to work with the stream function as well as the velocity potential, because
we later consider rotational flow, for which no potential exists.

pd
» A
—-’
U 8
—_—
—_—

Fig. 2.1. Basic incompressible flow past a circle.

For plane incompressible flow the stream function is defined in Carte-
sian coordinates by
df = udy — vdx (2.1)

In inviscid motion it satisfies the differential equation
Vi = —alf) (2.2)

which ecxpresses the physical fact that vorticity is constant along
streamlines in the absence of viscosity. This is a nonlinear equation
unless the vorticity w() is a linear function of 4. For uniform flow far
upstream the vorticity vanishes, leaving Laplace’s equation
by e
goy Y P g (2.32)
¥ ¥

Here, and throughout this book, subscripts are used to indicate partial
derivatives. The boundary conditions are

upstream: (7, 0) — Ur sin 0 as ¥ —> 0 (2.3b)

surface: J(a,0) =0 (2.3¢)

together with some condition to rule out circulation, such as a require-
ment that the flow be symmetric about the line § = 0:

(r, 0) = —f(r, —0) (2.3d)

The solution is given by the uniform stream plus a dipole at the center

of the circle:
2

o = U(r — %—) sin 8 (2.4a)

2.2. Circle in Slight Shear Flow 11
The corresponding velocity potential is

d)() — L?(l, i i,) cos (241))

bo ity = Uz + %’) o——" (2.4¢)

2.2. Circle in Slight Shear Flow

Consider first a slight perturbation of the boundary conditions far
upstream. Let the oncoming stream be a parallel low with small constant

vorticity (Fig. 2.2), its speed being
. G . ro.
b, = L“(\l — 6;) = L‘(\l Te sin Bv) (2.52)

— r/

—

Fig. 2.2. Slight shear flow past a circle.

so that its stream function is, towithin a constant,

2

b = Uly + de b4 ) — U[r sinf - »;ega —cosze)] (2.5b)

. U
Wy, = szdjx = *E—a_ (2‘5C)
The full problem is therefore
e ¥ u
l/}rr - 7 -+ —192g = 87 (26&)
2
g Ulrsin6 + del (1 cos 20)]  as 1o (2.6b)

P(a, 0) =0 (2.6¢)
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To obtain a unique solution we must add, for example, the requirement
that no additional circulation is induced by the body.

If the dimensionless “vorticity number” ¢ is small, it seems likely
that the flow will depart only slightly from our previous solution for
irrotational motion. On that assumption we tentatively set

G(r, 0; ) = dylr, 0) + edy(r, ) - - 2.7

where i, is the basic solution (2.4a). Substituting into the full probl'em
(2.6) and equating like powers of ¢ yields for the first-order perturbation
/i, the problem

r 1 Lv
. (289
1 U : 2.8b
(.1,1—94;;'-(1 — cos 26) as ¥ — DO (2.8b)
dn(a, 8) =0 (2.8¢)

In this simple problem a particular integral that accounts for the
nonhomogeneous terms on the right-hand side of the differential
cquation (2.8a) is given by the rotational part of the flow far upstream.
Thus it is convenient to express the solution as

Y = i% (1 — cos 20) + x4(r, 6) (2.9)
Discovery of a particular integral has reduced the differential equation

to homogeneous form—the Laplace rather than the Poisson equation—so
that the complementary solution x, satisfies the problem

o + 4 1% g (2.102)

r r?
¥ —> const as ¥ — o0 (2.10b)
xi(a, ) = — % Ua(l — cos 20) (2.10c¢)

This is as readily solved by separation of variables as was the basic
problem (2.3), there being again a unique solution that is free of circula-
tion. Then collecting results gives as the complete first-order solution

2

2 3
g =Ulr —Lsin0 + ieb’[—’a—(l — cos 26) -+ - cos 20 — a] (2.11)

The basic solution consists of the uniform stream—a dipole at infinity—
plus its image in the circle—a dipole at the origin. Similarly, the

2.3. Slightly Distorted Circle 13

first-order perturbation consists of the rotational part of the free stream,
its image in the circle, and a constant to adjust the stream function to
zero on the surface.

Ordinarily one would write “-++ ...” or “-|- O(¢?)” at the end of this
equation, to emphasize that the result is correct only to first order for
small e. However, in this untypical case the perturbation expansion
terminates; the solution is exact [cf. L.amb, 1932, p. 235, Eq. (23)].
For any other upstream profile, however, the problem would be non-
linear, and the perturbation solution would be an infinite series in
powers of ¢ (see Exercise 2.4).

This solution has been considered by Hall (1956) as a model for the
effect of shear upon the reading of a pitot tube in a wake or boundary
layer. It is easily shown that the stagnation streamline 4 = 0 originates
upstream at y &~ tea. Hence the measured stagnation pressure is greater
than that directly upstream; the impact tube reads too high a value. This
effect has been observed experimentally. Hall treats the same problem
for a sphere, which is a great deal more complicated.

2.3, Slightly Distorted Circle

Consider next a perturbation of the boundary conditions at the surface
of the body. This introduces some features of perturbation theory that
did not appear in the preceding example. Let the body (Fig. 2.3) be

described by
r = a(l — ¢ sin? f) (2.12)

"T'his may be regarded either as the first approximation for an ellipse, or
the exact description of a more complicated curve.
As before, we tentatively assume a perturbation expansion in powers

of &:
P(r, 05 8) = thy(r, 0) + ey(r, 0) + - (2.13)

and substitute into the full problem. In the equation of motion (2.3a)

Fig. 2.3. Uniform flow past a slightly distorted circle.
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and upstream boundary condition (2.3b) we can again equate like powers
of ¢ to obtain for the first two terms

Vi, = 0, o — Ur sin § as ¥ — 0 (2.14a)

Vi =0, ¢ =0 as 1 —> 0 (2.14b)

However, there is a complication in the condition of tangent flow at the
surface of the body. Written out precisely it is

Jofa(l — esin? 0), 6] = edyfa(l —esin?6),0] = =0 (2.152)

Here the perturbation paramecter ¢ appears implicitAIyT in the ﬁrst
argument of the functions, as well as explicitly, so that it is not possible
directly to cquate like powers of ¢ to zero. This Can~be achieved only by
expanding the functions to exhibit explicitly their dependence on e.
If we assume that ¢, , like ¢ , is analytic in its dependence upon 7, we
can expand in Taylor series about 7 = a. Keeping only linear terms 1in
e gives

bo(a, 0) — easin® 8 iy (a, 0) — efy(a, 0) + = = 0 (2.15b)

It is now possible to equate like powers of ¢, giving
o(a, 0) = 0 (2.16a)
Jy(a, 0) = asin® 0 Jg,(a, 0) = $Ua(3 sin 6 — sin 306) (2.16b)

The last form is obtained by using the basic solution (2.4a) for .
'The perturbation problem (2.14b), (2.16b) now has the form of the
basic problem, and is just as easily solved. Thus the complete first-order

approximation is found to be

. 2 . 2 1 )
b= Ulr — ) sind -+ beU(3 “7 sin§ — % sin36) + O (217)

Values at the surface of the body, which are usually those of most
interest, could be obtained simply by setting 7 equal. to .its surface
value (2.12). However, it is consistent with the approximation already
introduced to simplify the results by dropping higher-order terms,
which have no significance. This is accomplished by again expanding in
Tavlor series about the basic value r = a. Thus, for example, one
finds for the surface speed

g. = UQsin 6 - esin 30 + ) (2.18)

2.4. Circle in Slightly Compressible Flow 15

2.4. Circle in Slightly Compressible Flow

Consider now a perturbation of the equations of motion. Let the fluid
be slightly compressible, the free-stream Mach number being small. It is
convenient to work with the velocity potential, because the connection
between the stream function and the velocity 1s complicated by variations
of density. et the veloeity vector be given by q = U grad é. Then for
planc flow of a perfect gas the full potential equation is (Oswatitsch,

1956, p. 328)
o (,bw - le[d’f‘#ww - 24%:#)1/‘7511/ - ¢y2¢’1///

— 14 771 ((f)f - d’yz - 1)(‘i’u o d%/z/)] (219A)

[89]

where M 1s the free-stream Mach number. T'ransforming this to polar
coordinates gives

b= BB apfg, e g 2

ror & TR ey
. 9 b, . e
S D = T (8 =T B ] (2.19b)

It 1s convenient to choose the length scale such that the radius of the
circle i1s unity. Then the boundary conditions are

upstream: ¢ —rcos ! as v — (2.20a)
surface: é(1,0) =0 (2.20b)

plus a requirement of symmetry to rule out circulation.

Rather than assume a perturbation expansion as before, we take this
opportunity to illustrate iteration as an alternative way of finding succes-
sive approximations. To this end, all terms representing the effects of
compressibility have been written on the right-hand side of the differ-
ential equation. Neglecting them altogether leads to the basic incompres-
sible solution, given by (2.4b) with U = a = 1. To calculate the
first-order cffects of compressibility, we use that basic solution to evaluate
the nonlinear right-hand side, and solve again. The differential equation
becomes

b1 ol
e [(‘

L 2 coso 713; cos 36]  (2.21)

7 7> )

In iterating it is convenient to calculate the complete solution at each
stage, rather than only a small correction to the previous result. Then the
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full boundary conditions (2.20) are to be imposed at each stage. To
indicate this change, we denote the successive approximations by
Roman-numeral rather than Arabic subscripts. The term in (y - 1) in
the differential equation is scen to have no effect upon the first approxi-
mation ¢, . The first-order effect of compressibility is independent of
the thermodynamic properties of the gas. .
Following Rayleigh (1916), we find by scparation of variables a partic-
ular integral of the iteration equation (2.21) that vanishes at infinity:
l

J)COSB — -

! Ll
273 4r

¢m::JP“— um3ﬂ (2.22)

I'o this must be added a solution of the homogeneous equation —the
Laplace equation—that restores the boundary conditions. The final
result 1s

- 131 ! 1

[ ) ! .
951 = (‘7' — ,l’ cos 0 — JI'[(E;’ - ir’S - Ti —;—5—) cos 0

() cos 3] (223)

Calculating from this the maximum surface speed reproduces the first
two terms of Simasaki’s series (1.1) quoted in Chapter I.

Higher approximations can be found by repeating th§ iteration
procedure, the only complication being that the compgtanonal labor
involved grows at a staggering rate. It can be minimized by using
complex-variable theory and by systematizing the procedure.

2.5. Effect of Slight Viscosity

One might attempt to treat viscosity in the same way as compressibility.
It is convenient to work with the stream function, which in plane
incompressible flow satisfies the equation

4

glwaﬁwzm¢ (2.24)

.
Here v is the kinematic viscosity. If we again introduce dimensionless
variables such that U = @ = 1, v can be replaced by R, where
R — Ua'v is the Reynolds number based on radius. This equation
expresses the physical fact that vorticity is convected with th.e loc‘:al
velocity (the left-hand side) and simultaneously diffused by viscosity
(the right-hand side). .
At infinite Reynolds number the right-hand side of the equation

2.6. Boundary Layer by Coordinate Expansion 17

vanishes, leading to Eq. (2.2) for 4. Thus the basic inviscid solution
(2.4a) becomes exact in that limit. Suppose that we try to iterate to obtain
a perturbation solution for large Reynolds numbers. The equation should
be transformed to polar coordinates, and the condition of no slip at the
surface added. However, it 1s clear without carrving out these details
that the iteration attempt will fail. T'he right-hand side vanishes when
evaluated in terms of the basic solution, so that the Reynolds number
does not enter into the problem.

The resolution of this dilemma is of course provided by Prandtl’s
boundarv-laver theory. Despite their superficial resemblance, the
problems of slight compressibility and slight viscosity are essentially
ditferent. For the first, the basic solution is a valid approximation
cvervwhere in the flow ficld, whereas for the second it is invalid in a
ncighborhood of the surface no matter how large the Reyvnolds number,
For this reason the effect of slight compressibility is a regular perturbation,
whereas the effect of slight viscosity is a singular perturbation.

2.6. Boundary Layer by Coordinate Expansion

Singular perturbation problems and the basic ideas of boundary-layer
theory will be discussed in later chapters. For the present, it is inform-
ative simply to recall the well-known results of Prandtl. At high Revnolds
numbers, viscosity is significant only within a thin layer near the surface
of a body, where Eq. (2.24) for 44 may be approximated by

d
VIJA/‘#M - l/"z‘lpw =, T 9 d—f (2.258.)

Here v and y are curvilinear coordinates along and normal to the body
surface (Fig. 2.4). Evidently one integration has been performed with

respect to 3 to reduce the equation from fourth to third order. The last
term is the function of integration, ¢ being the inviscid surface speed.

R

Fig. 2.4. Boundary-layer coordinates for a circle.
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Two boundary conditions are provided by the requirement of zero
velocity at the surface:

P(x, 0) = ¢,(x,0) =0 (2.25b)

The third condition, that the inviscid surface speed be attained at the
outer edge of the boundary layer, may be written

lim (v, ¥) = ¢ (2.25¢)
with the understanding that here y — o0 means far from the surface
only on the small scale of the boundary-layer thickness.

‘The previous examples were all parameter perturbations. We now
consider a coordinate perturbation for the boundary layer on a circle.
Within the framework of Prandtl’s theory, this is again a regular pertur-
bation.

Suppose that the distance x from the stagnation point is small
compared with the radius @ of the circle. Then the stream function can
be expanded in powers of x g, and it is clear from symmetry that only
odd powers will appear. It is convenient to write the expansion as

N 2,88 nU
b =V 2Uav [7]{1(7}) - 5(7) f2(n) — ]» n = )"\/’L—,a— (2.26)
which is the standard form of the Blasius series (Schlichting, 1960,
p. 146). We take the inviscid surface speed from the basic solution
AU R

g = 2U sin ?\1 = 2U[ _(ﬁ) + ]

P b (2.27)

and substitute into the boundary-layer problem (2.25). Upon equating
like powers of x a, we obtain a sequence of problems involving ordinary
differential equations:

F A1 =0, RO =£/0) =0, f(®) =1 (228)
R AL, 1 =0, f0) = £ =0, () =4
(2.28b)

The first of these is Hiemenz’ classical problem of viscous flow at a plane
stagnation point, and the remainder are linear perturbations thereof.

Numerical integration (Tifford, 1954) gives f;'(0) = 1.2325877 and
1/(0) = 0.7244473. Hence the expansion for the coefficient of skin
friction is found to be

1 ¥ e
TH VR 69732 —2732(3) + ]

T

(2.29)

;=
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This vanishes at x @ = 1.6, suggesting that the boundary laver separates
from a circle at about 927 from the stagnation point. Although this
estimate has been refined to 109° by calculating four more terms in the
series (Schlichting, 1960, p. 154), the occurrence of separation invalidates
the whole analysis. The resulting broad wake drastically alters the flow
over the front of the body. Therefore although Prandtl’s Eq. (2.25a) is
valid there, the inviscid surface speed ¢ is not given correctly by (2.27)
but is unknown (see Fig. 7.1). Experiments show that separation actually
occurs at about 81"

"The Blasius series is self-consistent only for bodies where the solution
shows no separation. An example is the parabola in a uniform stream,
for which the 6-term counterpart of (2.29) was shown in Eq.(l1.5)of
Chapter I.

EXERCISES
2.1. Pulsating circle. Consider uniform plane flow of an incompressible
inviscid liquid past a circular cvlinder whose radius varies slightly with time
according to @[l - ¢f(#)]. Calculate the velocity potential to first order in e.
Iind the stream function, and show that it does not vanish on the surface.

2.2. Slightly porous circle. A uniform stream of incompressible inviscid liquid
Hows past a hollow circular cvlinder whose surface is made porous by drilling
many tiny holes normal to the surface. Assume that the normal velocity at
the surface is some small parameter ¢ times the difference in pressure coefticient
between the outer surface and the interior (which is assumed to be at constant
pressure throughout), and that the net flux through the surface is zero. Calculate
the stream function of the external flow approximately to order ¢, and the
interior pressure. Check the signs of these results by physical reasoning. What
is the corresponding result for a slightly compressible flow, if only linear terms
in ¢ and M? are retained?

2.3. Corrugated quasi cylinder. Consider an infinitely long body of revolution
(Fig. 2.5) of radius af[l - &sin(2/0)].
dimensional velocity potential for uniform incompressible flow (without cir-

Calculate approximately the three-

culation) normal to the axis, keeping only linear terms in e. Using expansions
for the Bessel functions, simplify your solution for the case of wavelength
so great that only linear terms in a'b are retained, and interpret the result as a
quasi-two-dimensional one. Show that in the opposite extreme of very large
a'b the perturbation is a plane harmonic function near the surface, with ¢
appearing only as a parameter; and justify this by physical arguments.



See

Note

20 II. Some Regular Perturbation Problems

/
i
\
/5
Fig. 2.5. Infinite corrugated cylinder.

2.4. Circle in parabolic shear. A circular cylinder of radius @ is symmetrically
placed in a parallel stream of incompressible inviscid fluid having the parabolic
velocity profile # = U(1 — 3ey?'@?). Find an exact implicit expression for the
vorticity w(y), and expand to give w as a series, keeping terms of order &
Carry out a perturbation solution for the flow, showing that a difficulty arises
in the term of order ¢ because no solution can be found for which the velocity
disturbances produced by the body disappear far upstream.

Chapter 111

THE TECHNIQUES
OF PERTURBATION THEORY

3.1. Introduction; Limit Processes

The examples in the preceding chapter have served to introduce
various techniques for handling perturbation problems. We now seek
to classify and generalize those that are of common utility. We begin
with some matters of notation, definitions, and relevant processes of
analysis.

We are concerned with finding approximate solutions of the equations
of fluid motion that are close to the exact solutions in some useful sense.
This involves various kinds of equality, which in decreasing degree of
identification will be expressed by the following symbols:

identical with

= equal to

asymptotically equal to (in some given limit) (3.1)
approximately equal to (in any useful sense)

proportional to

A

As discussed in Chapter I, we consider approximations that depend
upon a limit process, the result becoming exact as a perturbation quantity
approaches zero or some other critical value. One often cncounters a
double or multiple limit process, in which two or more perturbation
quantities approach their limits simultaneously. Because the order of
carrying out several limits cannot in general be interchanged, one must
frequently specify the relative rates of approach. This specification
provides a similarity parameter for the problem. The following are some
familiar examples :

(a) Plane transonic small-disturbance theory for a wing of thickness
ratio ¢ (von Kdrmdn, 1947):
e — 0y M—1
M1y e oW
21
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(b) Iypersonic small-disturbance theory for a body of thickness
ratio ¢ (Hayes and Probstein, 1959, p. 36):
e ->0 1

Vo oy a0

(¢) Newton-Busemann approximation for hypersonic flow past a

blunt body (Cole, 1957):

M- = | 1

o e O

y > 1)

(d) Hypersonic small-disturbance form of Newton-Busemann approxi-
mation for a slender body of thickness ratio ¢ (Cole, 1957):

e >0 |

Vo> % =01
M [ o = aee oW
v =

I i

In the last example one might have anticipated two similarity parameters,
but only one is found to be significant.

A perturbation quantity is never uniquely defined. For example, the
thickness parameter for a slender body may be taken as its thickness
ratio, maximum slope, mean slope, etc. Of course it may also be changed
bv a constant multiplier, as in referring Reynolds number to radius rather
than diameter for a sphere. One should be alert to the possibility of
exploiting this freedom by replacing the obvious choice by an alternative
that is superior to it in some respect. 'The possibilities are too diverse
to be subject to rules. They can only be suggested here by listing a
number of cases where an ingenious choice of the perturbation quantity,
usually suggested by extraneous considerations, leads to simplification
or improvement of the results:

(a) (M2 — 1) instead of (M --1) in transonic small-disturbance
theory, so that the result is valid also in the adjacent regimes of
subsonic and supersonic flow (Spreiter, 1953),

(b) 1 VM2 — 1 instead of | M in hypersonic small-disturbance
theory, so that the result is valid also in the adjacent regime of
supersonic flow (Van Dyke, 1951),

(¢) (y — 1) (y =~ 1) instead of (y — 1) in the Newton-Busemann
approximation for hypersonic flow, because it can be identified
with the density ratio across a strong shock wave (Hayes and
Probstein, 1959, p. 7),

Bttt e e e
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(d) (log R4 4 y - }) instead of log R in viscous flow past a circle
at low Reynolds number (y being Euler’s constant), because
the first two terms of the Stokes expansion are thercby combined
into one (Kaplun, 1957; see Section 8.7),

(¢) ¢ (1 — ¢) instead of &, ¢ being the density ratio across a normal
shock, in the Newton-Busemann approximation for the standoff
distance of the detached shock wave on a blunt body in super-
sonic flow, becausc it then becomes infinite for M — I, as
it should (Serbin, 1958),

(f) (4 -~ BR'?* . -)*instead of (42 -~ 2ABR™'* - -) for the drag
of a bluff body in laminar flow at high Reynolds numbers,
which is suggested by theory and agrees better with known
results (Imai, 1957b),

(g) 2 (1 — 2.4 -~ - ) instead of 2#(1 — 2 .4 — --) for the lift-curve
slope of an elliptic wing of high aspect ratio .1, because it then
vanishes for 4 — 0, as it should (see Chapter IX),

(h) ENVI — g ¢ being a parabolic coordinate, instead of x in the
Blasius series for the boundary layer on a parabola, because the
radius of convergence is thereby extended to infinity (see
Chapter X)),

(i) ¢ (2 — ¢) instead of ¢ in free-streamline theory (Garabedian,
1956), where 2 - ¢ is the number of space dimensions, because
the radius of convergence is thereby increased.

3.2. Gauge Functions and Order Symbols

The solution of a problem in fluid mechanics will depend upon
the coordinates, say v, v, 3, ¢, and also upon various parameters. One
or more of these quantities may, by appropriate redefinition, be regarded
as vanishingly small in a perturbation solution. We consider the behavior
of the solution as it depends upon one such perturbation quantity, with
the other coordinates and parameters fixed. Thus we scek to describe the
way in which a function f(¢) behaves as ¢ approaches zero. An analogous
situation has already arisen in the upstream boundary conditions (2.3b),
(2.6b), etc., where it was necessary to describe the behavior of the solution
far from the body.

There are a number of possible descriptions, of varying degrees of
precision. We discuss six of them, in increasing order of refinement.
First, one may simply state whether or not a limit exists. For example,
sin 2¢ has a limit as ¢ — 0, whereas sin 2 ¢ has not. However, we are
concerned only with problems where a limit is believed to exist.
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Second, one may describe the limiting value qualitatively. There arc
three possibilities: the function may be

(a) vanishing: fle)-—>0
(b) bounded: fle) -7 = (
(c

as e-»0
c) infinite: fle) = = \

It is a peculiarity of this mode of description that the first casc is included
in the sccond; a function that vanishes is also bounded. However, one
would naturally use the first description when possible, because 1t 1s
more precise.

Third, one may describe the limiting value quantitatively. There are
again threc possibilitics, only the second having been refined:

() Tim f(e) = 0 ,
(b) lim f(e) == ¢, a constant as e —0
() lim f(e) == = \

Fourth, one may describe gualitativelv the rate at which the limit 1s
approached. Only cases (a) and (¢) above are thus refined. This can be
done by comparing with a set of gauge functions. T'hese are functions
that are so familiar that their limiting behavior can be regarded as known
intuitively. 'The comparison is made using the order symbols O (“big
oh”) and o (“little oh”). They provide an indispensible means for keeping
account of the degree of approximation in a perturbation solution.

The symbol O is used if comparing f(¢) with some gauge function
5(¢) shows that the ratio f(¢) (¢) remains bounded as ¢ — 0. One writes

fe) = OB(e)]  as e—0 if 1{11?]5:8 - (3.2)

The symbol o is used instead if the ratio tends to zero. One writes

) - ofs 4 : - fle) _

fle) == o[d(e)] as e—0 if  lim 50 0 (3.3)
Some examples are

sin 2 == O(e), Il —cose == O(?) = ofe)
VI — et =0(1),  sec il -be) = O(e?) = o(l) (3.4)
cote = (L), exp(—1ie) = o(e™) for all m
€
Like the perturbation quantity e itself, the gauge functions are not
unique, and a choice other than the obvious one may occasionally be
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advantageous. For example, it might under some circumstances prove
useful to replace the first case in (3.4) by the equivalents

sin 26 = O(2e),  O(tan &), o(l—f—), etc.
-+ &
One ordinarily chooses the real powers of ¢ as gauge functions, because
they have the most familiar properties. However, this set is not complete.
[t fails, for example, to describe log 1 &, which becomes infinite as e tends
to zero, but more slowly than any power of &. The powers of ¢ must
therefore be supplemented, when necessary, by its logarithm, expo-
nential, log log, etc., or their equivalents. Examples are

sech™l e = ()(log L), cosh™ Kye) = O(log log L)
& \ &
| N (3.5)
cosh .= O(el'e), exp(fcosh 2) = O(exp[— 5¢'¢])
Often, as in (1.4), one writes log ¢ where log 1 ¢ would be more appropri-
ate.
Neither order symbol necessarily describes the actual rate of approach
to the limit, but provides only an upper bound. Thus it is formally
correct to replace the first example in (3.4) by

sin 2¢ == O(1), o(l), O(?), o(e?), etc. (3.6)

However, we assume that the sharpest possible estimate is always given.
'I'his means, for example, choosing the largest possible power of ¢ as the
gauge function, and using o only when one has insufficient knowledge
to use O. Of course the result may still be only an upper bound for lack
of sufficient information.

"The mathematical order expressed by the symbols O and o is formally
distinct from physical order of magnitude, because no account is kept of
constants of proportionality. Therefore Ke is O(e) even if K is ten
thousand. In physical problems, however, one has at least a mystical
hope, almost invariably realized, that the two concepts are related. Thus
if the error in a physical theory is O(¢) and ¢ has been sensibly chosen,
one can expect that the numerical error will not exceed some moderate
multiple of ¢: possibly 2¢ or even 2m¢, but almost certainly not 10e.

The rules for simple operations with order symbols are evident from
this physical connection. IFor example, the order of a product (or ratio)
is the product (or ratio) of the orders; the order of a sum or difference
is that of the dominant term—i.e., the term of order &” having the
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smallest value of m—etc. Order symbols may be integrated with respect
to either ¢ or another variable. It is not in general permissible to differ-
entiate order relations. Nevertheless, in phvsical problems one commonly
assumes that differentiation with respect to another variable 1s legitimate,
so that the derivative has the same order as its antecedent. For other
properties of order symbols see the first chapter of Erdélyi (1956).

3.3. Asymptotic Representations; Asymptotic Series

A fifth scheme is to describe quantitatively the rate at which a function
approaches its limit. "T'his constitutes a refinement of the fourth scheme --
the use of order symbols—just as the third scheme does of the second.
Wesimply restore the constant of proportionality, and write

(&) ~ cd(e) as ¢—0 (3.7a)
if
- fle)
ltlilol 50 c (3.7b)
that is, if
f(e) = ¢d(e) — o[d(e)] (3.7¢)

This is the asymptotic form or asymptotic representation of the function,
and constitutes the leading term in the asymptotic expansion discussed
below. Some examples are

sin 2e ~ 2, sech™! e ~ log .
V1 — &~ 1, KO(—I—/) ~ \/ gsl/ze—l/e (3.8)
ax —t
cot e ~ l, ‘ e:—dt ~1
e Jo 1 + et

Sixth, the preceding description—which is the most precise one
possible using only one gauge function—can be refined by adding
further terms. Consider the difference between the function in question
and its asymptotic form as a new function, and determine its asymptotic
form. The result can be written

fle) ~ cdi(e) + cx85(e)  as e—0 (3.9a)
where the second gauge function 8,(¢) is necessarily of smaller order
than the first:

Sye) =of8y(z)]  or  lim g—j% —0 (3.9b)
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and the error 1s of still smaller order:
fe)  ~a0y(e) - exdye) - 0[du(e)] (3.9¢)

Further terms can be added by repeating this process. Thus one con-
structs the asymptotic expansion or asymptotic series to N terms, written as

fe) ~ c10,(g) — c04(e) cxOx(e)
N
- 2 ed,(e) as e-—>0 (3.10a)
and defined by
.
fe) =2, cdle) = ofdu(e)]  as e—0 (3.10b)
o=l

If the function f(¢) were known, together with the gauge functions
»,(¢), the coeflicients ¢, of the asymptotic expansion could be computed
in succession from

e) - X1 e,8 (&)

e

¢, == lim (3.11)

n T 5.()

It the gauge functions are all integral positive powers of ¢, one speaks of
an asymptotic power series. As the number N of terms increases without
Jimit, one obtains an /nfinite asvmptotic series, which may be either con-
vergent or divergent,

Some examples of asymptotic expansions are

sin 2e ~ 2g — 3 g -+ 14—585 -+
sech™ e ~ 10g§ - }1 e — 335 et —+
1\1,(%) ~ \"“'327’6' 20141 - %g - lgge’l o) (3.12)
|0 lii‘% ol e et e — e - gu(»wn!g"

logn! ~(n - Hlogn —n ~ logh/27 -

The first two of these converge if extended indefinitely; the latter three
diverge.
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It is proper to regard a distant boundary condition as an asymptotic
relation. For example, (2.6b) will henceforth be rewritten as

b~ U[;i 2 73(1 — cos 20) -+ r sin 0] as ¥ -— (2.6b")

It must be understood that this admits the possibility of an error of order
o(r). Actually, in the problem in question, the next term in this asymptotic
expansion is O(1); the stream function must be left unprescribed far
upstream to within a constant, which corresponds physically to the
displacement of the stagnation streamline.

3.4. Asymptotic Sequences

The process just described of constructing an expansion term by term
is effectively that employed in perturbation solutions, such as those of
Chapter I1. Thus in each problem a perturbation solution generates a
special sequence of gauge functions

3i(e), Bse), Ogle), (3.13)

that are arranged in decreasing order: 8, ., = 0(3,). This is the asymptotic
sequence associated with the problem. It cannot be prescribed arbitrarily,
because it must be sufficiently complete to describe logarithms, for
example, if they appear. On the other hand, there are an unlimited num-
ber of alternatives to any particular asymptotic sequence:

sin 2e ~ 2e —i53 - 1_5_85 e

3
~2tane — 2tan® e — 2 tand e 4 -

~ 2 log(l + &) - log(1 -~ &%) — 2 log(l + &) +
£ 756, e \?
~6 g~ Sl (3.14)
The last two forms illustrate the fact that alternative sequences need not
be equivalent: corresponding terms are not of the same order. Both
the asymptotic sequence and the asymptotic expansion itself are unique
if the perturbation quantity (e.g., ¢) and the gauge functions (e.g.,
e, log 1 ¢, log log 1 ¢, etc.) are specified.
We have seen that one way of attacking a perturbation problem is to
assume the form of a series solution. This requires guessing an appro-
priate asymptotic scquence. The simplest possibility is that, as in the
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examples of Chapter II, it consists of integral powecrs, &". Fractional

powers may also occur, particularly in singular perturbation problems.
Iixamples are:

I, el g, &%2 ... Unseparated laminar flow over smooth bodies at high
Reynolds number R, where ¢ — 1/R (Van kae,
1962a) ' )

I, e84, .. Separated Oseen flow at high Reynolds number R,

e = IR (Tamada and Miyagi, 1962)

Logarithms may occur at some stage, examples being

1, s}, e?log e, €2, &% log ¢, Axisymmetric flow at low Revnolds number R
: . )
... & = R (Proudman and Pearson, 1957)
2 2 o ool ; : : :
1, s1 110;: e, €%, ¢! log? ¢, supersonic axisymmetric slender-body theory
. 4 M ) .
et loge, & ... e = thickness parameter (Broderick, 1949)

e log e 21 2 e imati ¢
ge & e loge, &% ... Newton-Busemann approximation for plane

hypersonic flow past a blunt body, &=
(v — 1)j(y -~ 1) (Chester, 1956a)

(log &)1, glog &), Plane viscous flow at low Reynolds number

(log &)73, ... R, ¢ = R (Kaplun, 1957; Proudman and
o Pearson, 1957)
I, e, &% &% etloge, &) ... Subsonic  thin-airfoil theorv for round-nosed
profile, e = thickness parameter (Hantzsche,
1943)
1, a: .;-, &, &3 log ¢, Laminar flow over flat plate at high Reynolds
¥, number R, ¢ = I/R (Goldstein, 1956; Imai,
1957a)

In the last two examples, earlier investigators had obtained erroneous
solutions because they did not suspect the presence of logarithmic terms
(hh\cr examples arising in boundary-layer theory have been discusse\ci
by .bte\\'artson (1957), who shows that even log logg’s occur in the asymp-
totic solution far downstream on a circular C\,;linder.

Exponentially small terms are seldom cnc'ountered, and are difficult
to deal with. The following example shows that the estimate O(e 1)
has very little practical value:

, x> 1
I, X == 1 (3.15)
X

w?

~
=3
[}
|
—
o
—

—
.

The question naturally arises how one can be sure of guessing the
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proper asymptotic sequence. Apparently there are no general rules, but
the following principles are of some help:

(a) When in doubt, overguess. A superfluous term will drop out by
producing for its coefhicient a homogeneous problem, whose
solution (if unique!) is zero.

(b) Be ready to suspect the presence of logarithmic terms at the first
hint of difhculty.

(¢) Iteration will sometimes (but not always!) produce the proper
sequence automatically.

One usually has a feeling when the solution is progressing properly; all
terms match, and complicated expressions  often simplifv.  With
experience, one learns when the absence of such reassurance suggests a
re-examination of the assumed form of the series. However, the only
fool-proof procedure is to leave the asymptotic sequence unspecified,
and to determine it term by term in the course of the solution. This
technique will be illustrated in Chapters VII and VIIL

3.5, Convergence and Accuracy of Asymptotic Series

We have seen that an infinite asymptotic series may either converge
for some range of ¢, or diverge for all ¢. In perturbation problems one
often neither knows nor cares whether the series converges. This point
of view has been persuasively set forth by Jeffrevs (1926). It is a fallacy
to think that convergence is necessarily of practical value. Mathematical
convergence depends upon the behavior of terms of indefinitely high
order, whercas in physical problems one can calculate only the first few
terms and hope that they rapidly approach the true solution. This
requirement may sometimes be better met with a divergent than a con-
vergent series. Thus the expansion

Jole) == 1 - —}iej — 6148l —- 53}()—46‘3 ERE (3.16)
for the Bessel function has an infinite radius of convergence, but many
terms are needed for accurate results unless ¢ 1s small. With ¢ == 4, for
example, the first three terms actually increase in magnitude—so that
the series appears to be diverging—and at least cight terms are required
for three-figure accuracy. On the other hand, the asymptotic expansion

1} 2e 9 . L.
]0(\?) N\.’f[(l R ) cos (E — 74—)

75

1 . 1
S AT Al i

)| e e—0 (A7)
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is divergent for all & no matter how small, but a few terms give good
accuracy for moderately small e. "T'he first term alone is correct to three
significant figures for (I &) = 4.

T'he utility of an asymptotic expansion lies in the fact that the error
is, by definition, of the order of the first neglected term,and therefore tends
rapidly to zero as ¢ is reduced. For a fixed value of ¢, the error can also be
decrcased at first by adding terms; but if the series is divergent, a point
is eventually reached beyond which additional terms increase the error.
T'his behavior is indicated in Fig. 3.1. These properties are often ideal

E Must go to Must stop
2 here here i
=
<
°
3
2
=
o
g H
ﬂ 0en Dannnfl ﬂ
2 4 6 8 10 12 2 6 8 10 12
Number of term, 7 n
{a) {(b)

Fig. 3.1. Behavior of terms in scrics. (a) Slowly convergent series. (b) Divergent
asymptotic series.

for practical purposes, particularly in parameter perturbations of the sort
c,\cmpliﬁcd by thin-airfoil theory. Then only small values of ¢ are of
px.'z%ctlczll interest; and only a few terms arc calculated, so that the point
of Increasing error is not reached.

There are other problems, however, in which one attempts to make ¢
as large as possible. This is true of such parameter perturbations as
expansions for large or small Reynolds numbers. It is almost always
truc ()f‘ coordinate perturbations, because onc intends to apply the results
as far from the origin as possible. Under such circumstances, éon\'crgcncc
may be of considerable practical interest. As discussed in Chapter X
one can sometimes improve the rate and radius of convergence, or cvcr;
I'Cll‘dcr a divergent series convergent. ’

From a physical point of view, the perturbation quantity ¢ assumes
only positive real values. However, mathematical insight is often gained
b\ envisioning its analytic continuation into the compléx plane (Fig. 3.2).
I'his is p:artlcularly useful when the solution is a power series in the
perturbation quantity. Thus one considers the complex M2-plane in the
Janzen-Rayleigh method, the complex thickness-ratio-plane in thin-
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Fig. 3.2. Complex plane of perturbation quantity e.

airfoil theory, and so on. Then one can take advantage of the powerful
unifving viewpoint ot complex-variable theory.

Some knowledge of—and feeling for—the principle of analytic con-
tinuation is essential. An analvtic function has a power series develop-
ment at every regular point. This converges within a circle that extends
to the nearest singularitv. A function defined in any region, or even on
just a line segment, 1s ordinarilv defined uniquely in a much larger region
of the complex plane (possibly on several Riemann sheets), and can be
completed by the process of analvtic continuation.

Sometimes the first few terms of a perturbation solution suggest that
the series converges, but has its radius of convergence limited for no
apparent phvsical reason. According to the principles just outlined, this
must result from a singularity in the complex plane of ¢ elsewhere than
on the positive real axis. Several examples to be discussed in Chapter X
suggest that in these circumstances the singularity ordinarily lies on the
negative real axis, and in fact at ¢ — [, if the most natural choice of
variables has been made (Fig. 3.2). This artificial limitation can be
eliminated by shifting the singularity to infinity using a simple conformal
mapping, the Euler transformation:

= (3.18)
1l —e
The radius of convergence is thereby extended to the nearest singularity
in the complex plane of ¢ and the utility of the scries often greatly
improved.

3.6. Properties of Asymptotic Expansions

In substituting an assumed series solution into a perturbation problem
one must carry out such operations as addition, multiplication, and
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differentiation.  Addition and subtraction are justified in general.
Multiplication is valid if the result is an asymptotic expansion. It is
not in general permissible to differentiate an asymptotic expansion with
respect to either the perturbation quantity or another variable. These
and other properties of asymptotic expansions are discussed by Erdélyi
(1956). However, it appears that results are not available in sufficient
generality to cover such commonly occuring series as those involving
logarithmic terms. In practice, thercfore, one ordinarily carries out
tormally such operations as differentiation with respect to another variable
without attempting to justify them. When they are not justified, non-
uniformities will arise in the solution. )

In a physical problem, the coefficients in an asymptotic expansion will
depend upon space or time variables other than e. The series is said to
be uniformly walid (in space or time) if the error is small uniformly in
those variables. Examples of nonuniformity in a are )

&€
Vx
e log v = Ofe),

= O(e), but not uniformly near x = 0

(3.19)

but not uniformly near + = 0, o

A singular perturbation problem is best defined as one in which no single

~ asymptotic expansion is uniformly valid throughout the field of interest.

The nonuniformities illustrated in (3.19) arise in practical singular
perturbation problems. For example, the first will be encountered at a
round leading edge in subsonic thin-airfoil theory, and the second at a
sharp leading edge or in plane viscous flow at low Reynolds numbers.

We have observed that each function has a un'ique asymptotic
expansion if the gauge functions or asymptotic sequence is préscribcd.
On the other hand, the statement is often made that different functions
may have the same asymptotic expansion. The extent of this non-
uniqueness may be understood by considering the following example:

b

1 +e
Lpeve(” I —e gt e nzzo(—l)”a” (3.20a)

1 +e

With respect to the gauge functions &, these two functions have identical
asymptotic expansions to any number of terms. Their difference is so
small that it would become evident only if the infinite sequence of powers
of. ¢ were cxhausted, for example by summing them. It happens that
this is easily accomplished in this example by making the Euler trans-
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formation (3.18). With respect to powers of the new pcrturbajuor‘f
quantity & the two functions have different asymptotic cxpansions

(which happen to terminate):

DL
I e (3.200)
————1 T e: ~1--¢-+-e¢e- e-1e — egeliE
1 -¢

One speaks of e ¢ as being transcendentally small compared with the
sequence of powers of ¢, because it 13 o(z:t’”) for any m no matter how
large. Similarly, on a different level of magnitude, & itself 1S't1‘21nsc.endc11tf
ally small compared with the sequence (log &) ™, \\'h}c‘h arises, .f(,)r
exémple, in plane viscous flow at low Re.\'nolds numb'ers. I'he Ipos‘sm]hty
of dealing with transcendentally small terms will be discussed in Chapter
VIII in connection with that problem.

3.7. Successive Approximations

The perturbation problems encountered in ﬂx}id mech?nics usually
involve a svstem of ordinary or partial ditferential equations together
with approbriate initial and boundary copditior?s. Integro—dxﬁmjegtml
equations may also arise, as in problems 1Q\'01\'111g thermal radlatl(.)r_L
There are two systematic procedures for finding a solution b\ successive
approximations, both of which were illustrated in the previous chapter:

(i) substitution of an assumed series,
(ii) iteration upon a basic approximate solution.

In the first method-—which is somewhat more comm(.m—the guiding
principle is that since the expansion must hf)ld, at lea§t in an asymptotic
sense, for arbitrary values of the perturbation quantity &, terms of like
order in e must separately satisfy cach equality. That is, one can equate
like powers of ¢, terms in &” log” & having the same values of both and
n, etc. 4

Each method has its advantages and disadvantages, which can
sometimes be exploited by working with a combinati(.)n of the two.
The most important of these differences can be summarized as follows:

(a) Tteration can be started only if an appropriate init.ial approxin.latlon
is known. Series expansion is more automatic, becaus§ it can
generate the basic approximation if one substitutes a series \_\'1th
the asymptotic sequence left unspecified. An example is given
in Chapter VII.
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(b) Iteration eliminates the need to guess the asymptotic sequence.
It 1s therefore safer than assuming an expansion, unless one
leaves the asvmptotic scquence unspecified. For example, it
will often - though not alwavs, in singular perturbation
problems --produce logarithms in higher-order terms that arc
missed if a power series 18 assumed.

(¢) Bevond the second term the series expansion is more systematic
because 1t produces only significant results, whereas iteration
will, in nonlinear problems, generate some higher-order terms,
to which no significance can be attached because others of equal
order are missing. IFor example, in the Janzen-Rayleigh solution
tor a circle (Scction 2.4), the next iteration step would clearly
produce not only terms in 34, which are correct and identical
with those given by series expansion, but also some terms in 1%
and 3/® that should be disregarded because they are incomplete.

(d) Iteration will vield in a single step groups of terms of nearly the
same order that require several steps in a series expansion. For
example, in axisymmetric slender-body theory, each iteration
adds one more of the following groups of terms:

[1], [e*loge, €%, [etlog?e, etloge, &', ...

Whichever method is used, there are certain features common to all
perturbation solutions. 'T'he basic solution may be linear or nonlinear,
but all higher approximations are governed by linear equations with
linear boundary conditions. An exception arises in the case of transonic
and hypersonic small-disturbance theory, where the double limit process
is specifically designed to retain in the perturbation the essential non-
linearity of the problem. In those special cases only the third and sub-
scquent terms in the series satisfy linear problems. Otherwise, because
first-order perturbations are linearly independent, they may be super-
imposed. For example, the three perturbations studied separately in
Sections 2.2, 2.3, and 2.4 may be added to give the first-order solution
for slightly compressible flow past a slightly distorted circle in a slight
shear flow. Higher approximations, however, will be coupled through
cross products of the various &’s.

Although the equations governing higher approximations are linear,
they ordinarily contain nonconstant coefficients that depend upon the
previous approximations. It is often possible to simplify the computation
dramatically by taking advantage of known relations for those earlier
results. A simple example will appear in Chapter IV in thin-airfoil
theory, where both the differential equations and the boundary conditions
are used to simplify their counterparts in subsequent approximations.
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As in the Janzen-Rayleigh solution of Section 2.4, higher-order
problems typically differ from one another only in the appearance of
successively more complicated nonhomogeneous terms (depending upon
previous approximations) in the differential equations. These are
accounted for by finding a particular integral. Usually the best way of
seeking a particular integral is to guess it. Only after that attempt has
failed should one apply more sophisticated processes of analysis.

One should also be on the alert for the occasional problem in which
a general particular integral can be found in terms of previous approxi-
mations. We illustrate this possibility by two examples from the small-
disturbance theory of axisymmetric compressible flow. First, in an
approximate linearized theory of supersonic propellers the second—order
velocity potential is found to satisfy the nonhomogeneous wave equation

. b
Sy (1 My o T

= 2Mdéy,0 (3.21a)
where the first approximation is a solution of the homogeneous equation

~2¢, — 0. Burns (1951) has noticed that a particular integral is always
given in terms of the first-order solution by
M
oty 3.21b
(b‘lu - 1 — KE '\9/)16 ( )

Second, if one seeks to improve the linearized theory of subsonic or
supersonic flow past a body of revolution by considering nonlinear terms,
the second-order potential satisfies

z,‘zd’z = 11—);[2 -+ (7 - 1)342]¢1f‘i’1a'x -+ 2¢1r‘¢1xr -+ d’%r'qslrr} (322‘1)

where again ~ ¢, = 0. Van Dyke (1952) has found that to within
third-order terms a particular integral is given by
T ;"[2
boy = MWbulds — T prtn) — b (3.220)

Particular integrals of this sort are also ordinarily found by trial rather
than by systematic analysis. Analogous solutions of some homogeneous
equations were discovered by Lin and Schaaf (1951) for viscous flow.

3.8. Transfer of Boundary Conditions

Often a boundary condition is imposed at a surface whose position
varies slightly with the perturbation quantity . The surface may be that
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of a solid body (as for the slightly distorted circle of Section 2.3), a free
streamline, a shock wave, etc. (I'ig. 3.3). In order to carry out a systematic
expansion scheme, the boundary condition must in each case be expres-
sed in terms of quantitites evaluated at the basic position of the surface,
corresponding to ¢ = 0. Otherwise ¢ will appear implicitly as well as

Fig. 3.3. Examples of transfer of boundary conditions.

explicitly in the perturbation expansion, so that the result is unneces-
sarilly complicated, the series 1s not an asymptotic expansion, and it is
not possible to equate like functions of ¢.

The transfer of a boundary condition 1s etfected by using a knowledge
of the way in which the solution varies in the vicinity of the basic surface.
Often the solution 1s known to be analytic in the coordinates, in which
case the transfer 1s accomplished by expanding in Tavlor series about
the values at the basic surface. In the first approximation this usually
means that the condition is simply shifted from the disturbed to the
basic surface. In axisymmetric slender-body theory, on the other hand,
the solution is singular on the axis, but the transfer can be carried out
using the fact that the velocity potential varies near the axis like log 7
or the radial velocity like | r.

After the solution is calculated, values of flow quantities are often
required at the body or other surface. These can be found in simplest
form by repeating the transfer process, expressing them in terms of
values at the basic surface. Both of these transfer processes are
illustrated in Chapter 1V; see also Exercises 2.1, 2.3, and 3.2.

3.9. Direct Coordinate Expansions

Perturbation problems in which the small quantity is a dimensionless
combination involving the coordinates (space or time) rather than the
parameters alone have certain special features. A useful discussion of
the distinction between parameter and coordinate expansions is given
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by Chang (1961). The essential point is that no derivatives with respect
to a parameter occur, and it is therefore possible to calculate the solupon
for one valuc of the parameter without considering other values. Ordina-
rily one secks an approximation for either small or large values of one of
the coordinates. Tt is useful to designate these respectively as direct and
inverse coordinate expansions.

A direct coordinate expansion is natural to a problem governed by
parabolic or hyperbolic differential equations. One expands the solution
for small values of a time-like variable, which can of course be a space
coordinate rather than actual time. The perturbation quantity must
increase in the positive sense of that variable, following time’s AITOW.
Then there is no backward influence, so that each term in the perturbation
series is independent of later ones, and can be calculated in its turn.
The result is a perturbation expansion that describes the carly stages of
the evolution of the solution from a known basic initial state.

The following are tvpical examples of direct coordinate expansions.
Goldstein and Rosenhead (1936) have calculated the growth of the
boundary laver on a cylinder set impulsively into motion by expanding
in pO\\‘@I:S of the time, the governing equations being parabqlic. Se.ar the
stagnation point of a circle, for example, they find the skin friction to
be given by

(1 1.42442(U8) — 0.21987(Lyt)2 — -] (3.23)

1/2778/24
T ~ pv Ll Ay '\/7{,;}‘
4 1

where U, is the gradient of inviscid surface speed at the nose and x the
distance along the surface. As shown in Fig. 3.4, this series obviously
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Fig. 3.4. Growth of skin friction near a stagnation point.
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diverges for large time, where it should approach Hiemenz’ result for
steady flow. Such nonuniformity usually arises in direct coordinate
expansions (but see Sections 10.6 to 10.8).

A case where a space coordinate assumes the time-like role is Blasius’
expansion of the steady boundary laver on a cylinder in powers of the
distance x from the stagnation point, the boundary-layer equation
(2.25a) being parabolic for steady as well as unsteady motion. The result
(1.5) for the parabola is believed to converge only for x ¢ <= 7 4 (Van
Dyke, 1964a). Another such case, involving hyperbolic equations, 1s the
axisvmmetric Crocco problem: a perturbation of the self-similar solution
for supersonic flow past a circular cone yields the initial flow gradients
at the tip of an ogive of revolution (Cabannes, 1951).

FFor elliptic equations, coordinate expansions usually provide only
qualitative results. One ordinarily encounters a boundary-value rather
than an initial-value problem. Then because of backward influence
anv local solution depends on remote boundary conditions, and 1t 1s
not possible to calculate successive terms of an expansion for small
values of a coordinate. All that can be achieved is to find the form of the
expansion, each term being indeterminate by one or more constants.
For example, Carrier and Lin (1948) have examined the nature of viscous
flow near the leading edge of a flat plate by expanding for small radius.
T'helr series for the stream function is, after correction

o=z 2,432 (cos v cosE

: 29’) B2 lcos% — cos —;9)

2

T 42 sin® Blog r sin 6 ~- (8 — 7) cos 0]
v

+ % (sin 26 — 2 sin §) - g(" sin® f} 4- -+ (3.24)

where 6 = 0 on the plate. The constants 4, B, C, ... depend upon
boundary conditions far outside the range of validity of the expansion,
and are therefore undeterminable within the framework of the
analysis.

An exception is the unconventional case of an initial-value problem
for an elliptic equation. In the inverse problem of supersonic flow past
a blunt body (Fig. 3.5), the detached shock wave 1s prescribed, and one
seeks the body that produces it. Although the flow is subsonic near the
axis, the stream function can be expanded in powers of the distance
downstream of the shock wave, and the coefficients found in succession.
Cabannes (1956) has calculated seven terms of the series when M = 2.

See
Note
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Fig. 3.5. Supersonic flow past a blunt body.

For a paraboloidal shock wave, the stream function is described near the

axis by

b1 Sx Sy 250 11945 )
73 3a 18l 27la T
7051,x7 1,817,909 x 6 (325)
T 243 2) - 2916‘*(a) :

Aside from such rare exceptions, direct coordinate expansions can be
effectively applied to elliptic equations only by treating them as if they
were parabolic and truncating the series at a finite number' of terms.

The blunt-body problem is so intractable that séveral investigators
have been willing to introduce another independent variable in order to
render the equations parabolic or hyperbolic. Thus Cabannes (1953)
considers an impulsive start, and expands the unstcad_\"ﬂow ﬁeld‘m
powers of the time. He suggests that the accuracy will increase with
VMach number; at M = oc and for y = 7 5 he finds as the ratio of shock-
wave standoff distance 4 to nose radius a for any smooth body:

Y| 1
a 5(,

. o
—Lai) — - 1)77—5(. Lt ) (3.26)
Here 7 is the number of space dimensions: # = 2 for plane flow and
n = 3 for axisymmetric flow. We can expect the result to be the more
accurate for plane motion, because it is exact for the one—dim.ensional
piston problem n = 1. The serics evidently diverges for large time, but
Cabannes attempts to estimate its limit as the maximum given by the
two known terms. This yields 4 @ = 0.107 for plane flow, compared
with accurate numerical calculations of 0.377 for the circular cylinder.
We reconsider this discrepancy in Section 10.7.
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3.10. Inverse Coordinate Expansions

In contrast to direct expansions, which usually possess a finite radius
of convergence, inverse expansions for large values of a coordinate
ordinarily appear to be divergent asymptotic series. They also suffer
from indeterminacy irrespective of the type of the governing equations.
For elliptic equations the situation is the same as that discussed above
for a direct expansion. However, the undetermined constants can some-
times be related to simple integral properties of the solution. Thus the
first few constants in the expansion for subsonic flow far from a finite
body can be identified with its lift, drag, moment, etc. (Imai, 1953;
Chang, 1961). For parabolic and hyperbolic equations, indeterminacy
arises because the expansion runs contrary to the direction of the time-
like variable. Eigensolutions therefore appear at an early stage, whose
constant multipliers depend upon certain details of the previous history.
Occasionally a few of these can be supplied without detailed knowledge
of past events by invoking some global conservation principle (cf. Section
4.5). More often a sequence of constants remains undetermined.

The form of an inverse coordinate expansion varies widely with the
tvpe of the equations, the number of space dimensions, and the extent
of the body. In some problems the leading term of the expansion is
obvious; for example, it is evidently the undisturbed stream for the steady
flow far from a finite body, the conical motion for flow far downstream
on a blunted cone, and the corresponding steady motion for the flow
long after an impulsive start. Then one perturbs that basic solution to
find how it is approached. The approach is sometimes algebraic, in inverse
powers of the large coordinate, as for noncirculatory potential flow
far from a finite body (Imai, 1953). It very often involves logarithmic as
well as algebraic terms, as for circulatory potential motion or viscous
flow far from a body (Chang, 1961). In time-dependent problems it is
often exponential, as for unsteady viscous or free-streamline flows
(Kelly, 1962; Curle, 1956).

We quote one example. The Blasius series for the boundary layer
(Section 2.6) is a direct coordinate expansion for small distances from
the stagnation point. On a parabolic cylinder we can supplement that
approximation by an inverse expansion for large distances. It is evident
that the leading term is the solution for the flat plate, because far down-
stream the nose radius is negligible compared with the dimensions of
interest. Perturbing that basic solution yields as the complement to (1.5)
tor the coefficient of skin friction

14

/
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Here v is the abscissa, and (7 is an undetermined constant multiplying
the first of an infinite scquence of cigensolutions for the flat-plate solution
(Section 7.6).

Sometimes the leading term is by no means obvious. Free-streamline
motion provides an example of the complications that may appear. In
plane flow the width of the deadwater region increascs far downstream
like a2, but in axisymmetric flow it has the unlikely growth of
&1 2(log x)~'/* (Levinson, 1946).

3.11. Change of Type and of Characteristics

A curious feature of perturbation methods is that they may spuriously
change the type of the governing partial differential equations. A striking
example is Prandtl’s boundary-layer approximation. Although the
Navier-Stokes equations are clliptic, they are replaced by parabolic
equations inside the boundary laver, and by elliptic or hyperbolic ones
outside, according as the flow is subsonic or supersonic. Again, in the
theorv of surface waves the elliptic Laplace equation is replaced by a
nonlinear hvperbolic equation in the shallow-water approximation
(Stoker, 1957). Conversely, the hyperbolic equations of inviscid super-
sonic motion become elliptic in the slender-body approximation (Ward,
1955).

These changes of type imply significant changes in the regions of
influence and dependence, and in the boundary conditions required.
Thus Prandtl’s boundary-laver equations, because they are parabolic,
can be integrated step-by-step downstream. The backward influence of
their elliptic antecedents has been suppressed, but will reassert itself
in higher approximations (cf. Chapter VII). Similarly, the Kutta-
Joukowski condition must be abandoned at a subsonic trailing edge in
thin-wing theory, because its upstream influence has been lost.

Some assumption of smoothness underlies any such change of type.
The true type of the equations must be recognized wherever that
assumption is violated. Otherwise the perturbation solution will break
down at least locally. Thus boundary-layer theory is invalid near a corner,
as are the shallow-water and slender-body approximations. These thus
become singular perturbation problems as the result of discontinuities
in the boundary conditions.

Often the tendency toward change of type is incomplete; the pertur-
bation equations merely become “less hyperbolic” or “more elliptic.”
For hyperbolic equations this means that the characteristic surfaces are
changed. An example is supersonic small-disturbance theory, where at
each stage the true characteristics are approximated in the perturbation
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equations by the free-stream Mach cones. Again this defect is inconse-
qu'cntlal if the body is sufficiently smooth, but otherwise leads to non-
uniformities (cf. Chapter VI and Exercise 3.4).

EXERCISES

3.1. Modified hypersonic similarity rule. According to hypersonic small-
disturbance theory the pressure coefficient on a slender wedge or cone of semi-
vertex angle ¢ has the form

C, ~ e%f(Me)

Devise an alternative form that can be expected to be superior for thick bodies
in view of Newtonian impact theory, according to which the pressure coefhicient
at any point on a body in hypersonic flight is twice the square of the sine of
the angle of the surface with the stream. Exhibit the degree of improvement
realized by making numerical comparison with the full solutions at .W = .
Investigate whether the result can be extended further to thick bodies at lower
speeds if one is guided by the supersonic similarity rule

G, = ﬂz—l__—i F(VM? — Te)
3.2. Transfer of tangency condition. A small sphere pulsates in still air, its
radius varying with time as ¢f(7), and thereby produces weak outgoing waves
whose velocity potential satisfies the acoustic equation ¢, = ¢? V2. Show
that if the function f is sufficiently smooth the tangency condition can 'approxi-
mately be transferred to the origin as

o, 1 d ,
lim r, = 3 f(OF

Calculate ¢ using this condition. How smooth must f be ? What happens to the
solution if that restriction is violated ?

?.3. Estimate of ultimate value from coordinate expansion. 'Test Cabannes’
idea for estimating the value of (3.26) at infinite time by applying it to (3.23)
and (1.5), where the answers are known. Should one choose E}le value at the
inflection point when no extremum exists? Try to devise a better or more
rational scheme of this sort.

3‘4.‘ Effect of change of characteristics. 'The following problem is a mathe-
matical model of steady supersonic flow over the upper surface of a thin airfoil:
by — brr = &b, $0,y) =¢.(0,) =0 for y >0
é,(x,0) = &f (x), where f(x) =0 for x <0
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of the differential equation,

e i first lecting the right-hand side
o e erming 1o . on. Compare with the exact

and then iterating to find the second approximati :
solution to deduce under what restrictions on the function f the nth approxima-
tion is valid near the surface. Discuss what happens at great distances.

Chapter IV

SOME SINGULAR
PERTURBATION PROBLEMS
IN AIRFOIL THEORY

4.1. Introduction

We proceed now to consider problems in which the straightforward
perturbation schemes used herctofore break down in some region of the
flow field. There the ratio of successive terms is not small, as was
assumed, so that locally the approximation ceases to be an asymptotic
expansion. As a consequence of this nonuniformity, one may miscal-
culate or even lose essential results, such as the skin friction and heat
transfer in viscous flow at high Revnolds numbers, or the drag of a thin
airfoil. Moreover, at some early stage it usually becomes impossible
to proceed even formally to higher approximations. These are singular
perturbation problems. An excellent survey by Friedrichs (1955)
discusses their occurrence in branches of mathematical physics other
than fluid mechanics.

The prototype of a singular perturbation problem is Prandtl’s bound-
ary-layer theory. However, we introduce the subject instead by studying
the simpler problem of incompressible flow past a thin airfoil. Because
the motion is governed by the two-dimensional Laplace equation, which
is linear, it is possible to exhibit the results in analytic form, and so
display the main ideas more clearly. This problem is also admirably
suited for introducing two well-known methods that have been devised
for treating singular perturbation problems. Thus the present chapter
forms the cornerstone of the book. 'The subsequent chapters are simply
devoted to amplifying and extending the ideas set forth here in connection
with our standard problem of the thin airfoil.

The plan of attack is the following. We first calculate formally the
thin-airfoil expansion for a general symmetric profile. ['hen for several
specific shapes we exhibit the nonuniformities and nonuniquenesses that
arise because we violate the assumption of small disturbances at stagna-
tion points. Finally, we correct those defects, first by using an intuitive
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physical argument, second by matching with a local solution in thc.spirit
of B011ndar}'—la\'cr theory, and third by straining the coordinates in the

case of a round edge.

4.2. Formal Thin-Airfoil Expansion

We consider uniform plane flow of an incompressi'ble inviscid ﬂUI.d
past a thin airfoil. For simplicity, we restrict attention to symmetric
flow, because it embodies all the cssential features. Hf)\\ie\'er, asymmetric
effects due to camber and incidence can be treated similarly. For dejcalls
the reader can see the modern expositions of thin-airfoil theory given
by Lighthill (1951), Jones and Cohen (1960), and Th\\'ai‘te‘s .(1960). ‘

"\We use Cartesian coordinates, with the chord of the airfoil spanning
any convenient scgment of the v-axis, whose length may be assum?fl to
be of order unity. Then let the airfoil be described by v —= =« 1(:\‘),
where ¢ is some thickness parameter, and T(x) a function of order unity
that gives the thickness distribution (Fig. 4.1). Varying e produces a
family of affinely related profiles.

y

* y=ter(x)
s
= L

Fig. 4.1. Symmetric flow past thin airfoil.

The flow is irrotational, and it is convenient—with extension to thre.e
dimensional fows in view —to work with a velocity potential ¢. Let it
be normalized such that the velocity vector is given by q = U grad ¢
where U is the free-stream speed. 'Then the full problem is

differential equation: bor — by =0 (4.1a)
upstream condition: ¢ ~x - ofl) as &% P> 0 (4.1b)
tangency condition: o _ - eT'(x) at y == = eT(x) (4.1¢)

r

The second term in the asymptotic condition (4.1b) merely requires
that the perturbation potential vanish at infinity, although' it 1s actuajlly
O(1 ) for a closed body. This requirement ensures a unique solution

by ruling out circulation.
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T'his innocuous-looking problem, involving only the simplest linear
clliptic partial differential equation, is difficult to solve with acceptable
accuracy. The standard numerical method of conformal mapping due to
Theodorsen (Abbott and von Doenhoff, 1959) is tedious and inaccurate.
Hence the thin-airfoil approximation is of practical utility as well as
theoretical interest. It is even more useful in subsonic compressible
flow, where the equation of motion is nonlinear, and in three dimensions,
where conformal mapping is inapplicable.

We seek the asymptotic expansion of the solution as the thickness
parameter ¢ tends to zero. In the limit, the airfoil degencrates to a line
which causes no disturbance of the free stream, so the basic solution is
the uniform parallel flow. We tentatively assume that the asymptotic
scries has, for a given thickness function 7', the form

By, vy e) ~n -edi (v, y) — e%h,(x, 1) - by(v, v) - (4.2)

It is implied here that the expansion proceeds indefinitely in integral
powers of ¢. This appears to be true for incompressible flow unless the
airfoil is extremely blunt; see Exercise 4.3. For subsonic compressible
How past a round-nosed profile, however, our example (1.2) illustrates
that logarithms of ¢ appear beginning with ¢* log ¢.

In order to substitute this expansion into the full problem and equate
like powers of &, we must transfer the tangency condition (4.1c) to the
axis v — 0. If we assume that the ¢, (v, y) are analytic in y at v = 0,
we can expand in Taylor series to obtain

b, (v, —eT) = edy (v, 0 =) — &5y (v, 0 )
= Ty, (v, 0 )] = e[dgy(v, 0 )
o 71¢i‘_$/.’/(‘\h7 0 =)~ :%Tz(blz/w(’\.s 0 :')] """" (4.3)

and similarly for ¢,. Here v == 0-- refers to the top and bottom sides
of the slit to which the airfoil degenerates in the limit as ¢ -» 0, and across
which ¢, 1s discontinuous (whereas ¢, is continuous). This expansion,
though essential to obtaining a series of the desired form (see Section
3.8), is one source of the nonuniformities that we encounter later. We
might anticipate difficulties because of the successively higher derivatives
that appear.

Thus we obtain a sequence of problems that are lincar in the tangency
condition as well as the differential equation, the first being that of
conventional linearized thin-airfoil theory:

qSlJ‘I‘ N (;L"l,r/.»/ =0 (44;1)
é, = o(l) as a? o yP > oo (4.4b)
(%, 0 ) = =T"() (4.4c)
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‘f’zrr T ‘?SZUJ - (45‘1)
b, = 0( ) as a? + y' > w© (4.5b)
‘i’zz/(x, 0 IZ) =t T/(xﬂ)la'(”\'v 0) 4 T("v)d)]z/y(x» 0)
= £ [T(®)¢1x, 0) (4.5¢)
¢311: l ¢3yy =0 (463)
dy == o(l) as a? 3y —> W (4.6b)

byfx,0 ) = = T'(0)y,(x, 0) 5= T(¥)T'(X)br(x, 0)
- T(x)d)-lyy(xa 0) — %TZ(‘\V)(ZS]!/UU(”\.’ 0)
= 4= [T(0){bou(x, 0) — T ()T (0)3) (4.6¢)

The simpler alternative forms given for the second- and third-order
tangency conditions (4.5¢) and 4.6¢) are obtained by making use of both
the differential equations and the tangency conditions from previous
approximations. As a result of this modification, each problem is formally
the same as the first. Any higher approximation can be regarded as the
first apprO\imation for some fictitious airfoil whose thickness function
T, (x) is the last square bracket in the tangency condition.

Flow quantities at the surface of the airfoil can be expressed as power
series in ¢ by relating them, again through Taylor series expansion, to
the velocity components on the axis. Because ¢, , is given there by the
tangency condition, one needs only ¢, (x, 0). Thus, for example, the
surface speed ¢ is found to be given by

E b, 0) - bl 0) - TWTV() - T} = e (4])

Of course this process represents another possible source of nonuni-
formities.

4.3. Solution of the Thin-Airfoil Problem

We have reduced each higher-order thin-airfoil problem to the form
of the first. 'This crucial problem can be solved in various ways. It is
usually simplest to use complex-variable theory, the best method often
being to guess (¢, — i$ ) as a function of the complex variable 3 = x + 1y
that satisfies the boundary conditions. A useful table of such solutions
1s given by Jones and Cohen (1960).

Methods based upon the complex variable have the disadvantage,
however, that they cannot be generalized to three-dimensional flows.
An alternative method that is capable of such generalization is the
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representation of the body by a distribution of singularities. Sources,
dipoles, and so on, can be placed either on the surface or inside the body.
In thin-airfoil theory they are naturally distributed along the axis between
the leading and trailing edges. Only sources and sinks are required in
our symmetrical problem, an equal quantity of each being needed for
a closed body.

A point source of unit strength at the origin gives

é ::%Iog \/9721—73/2:2—;}{6 log = (4.8a)
1 X

b, = P sz? (4.8b)
1

b, = 5 f'y'. (4.8¢)

2 A 1y

For a sufficiently smooth airfoil, considerations of continuity show that
the local source strength must be twice the airfoil slope. This approxima-
tion is, in fact, justified to precisely the same extent as our transfer of
the tangency condition to the axis. Hence the solution of any one of the
thin-airfoil problems (4.4), (4.5), etc., is given by

burs 3) = — | S IRE T g (492)

1 i
buey) = - | &@gﬂ; at (4.9b)

as can be verified by direct substitution, or in complex form

ﬁbna@ - i¢ny = —1' " M_ﬂ df

e e (4.9¢)
In order to calculate surface values, as in (4.7), we need only
b€ O 4) . ™ T,
boal, 0) = 1 2ul8 D) g L7 E) g dE (410

Here the Cauchy principal value of the divergent integral is indicated
if v lies between the leading and trailing edges. A table of the airfoil
integral (4.10) for a number of thickness functions 7(x) is given by Van
Dyke (1956).
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4.4. Nonuniformity for Elliptic Airfoil

Most subsonic airfoils have round leading edges. The simplest finite
round-nosed profile is the cllipse, which we will investigate in consider-
able detail. Let the thickness function be 7(x) == 4/1 — a2, which describes
an ellipse of thickness ratio ¢ extending over —1 << & < 1 (Fig. 4.2).
The radius of the leading and trailing edges is &

! y=*EVI-x2

Fig. 4.2. Elliptic airfoil.

Substituting into (4.10) vields as the solution of the first-order problem
(4.4) for ¢,, on the axis

1, Xt <]
1 ¢ de
$1.(x,0) = — _4? — Y ¢ e T (4.11)
7‘_1\"1-—§“(»\'—§) N ,\:2>1

R B
1 ,\/l .\”2 - 1 )

More generally, the complex perturbation velocity throughout the flow
field is, from the table of Jones and Cohen:

([)1_,« - i¢1,/ == 1 T ﬁ (412)

With proper attention to principal values at branch cuts, this reproduces
(4.11) on the axis. Then (4.7) gives the familiar result of linearized thin-
airfoil theory that the surface speed is constant on an cllipse, with
g U =1 — & This value happens to be exact at the middle of the
ellipse, where the maximum occurs (Fig. 4.3).

It is a misleading circumstance that the first-order surface speed is
finite cven at the ends of the airfoil. According to (4.12) the perturbation
velocity itself is singular at the leading and trailing edges. The assumption
of small disturbances has been violated at the stagnation points, and as a
consequence the solution has broken down locally. The thin-airfoil
solution is not uniformly valid near the edges.
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The perturbation velocity is singular like a multiple of & #'/2, where »
is the distance from the stagnation point. Hence the region of non-
uniformity is a circular neighborhood whose radius is of order 2. As

1.6
12 -
Ist approx.
q ,/ ————— 2nd approx. (4.13)
U 08 ,’ Exact (4.140a)
| O Lighthifl's rule (4.31b)
I
!
q
04 {f | Y AT
| —> x
I
!
I
0 1 ] ! 1
10 08 0.6 0.4 0.2 0]

1x1

Fig. 4.3. Surface speed on ellipse with ¢ — 0.5.

might have been anticipated on physical grounds, this is of the order
of the leading-edge radius.

The failure of the perturbation solution is compounded in higher
approximations. The problem (4.5) for ¢, is seen to be identical with
that for ¢;. Hence the second approximation for surface speed is found
from (4.7) as ‘

die e B 4.13)
and this is singular like the square of ¢ 71/2. The first and second approxi-
mations for the case ¢ — 0.5 are compared with the exact resultin Fig. 4.3,
where the divergence of the series near the stagnation point is evident,
Further terms can be calculated indefinitely, and the 2xth approximation
found to be singular like (¢ 71/2)?") with the signs alternating in a futile
attempt to attain zero speed at the stagnation point by superposing
successively stronger singularities. (As in the first approximation, velocity
components of odd order are also singular, but contribute only regular
terms to the surface speed.) Thus the solution is improved at each stage
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except within a distance of order 2 from either edge, where it becomes
worse.

‘T'he formal thin-airfoil expansion can be verified by comparison with
the full solution, which is readily calculated by conformal mapping or
separation of variables in clliptic coordinates. The exact result for surface
speed 1s

I +
4 £ (4.14a)
U V1 o+ (1l — a?)]
Expanding this formally for small ¢ vields
i* — 7,1277Li13_‘v2 L 3_4 x
A i S My L §p— (4.140)

which confirms and extends our result (4.13). Moreover, it makes evident
the source of the nonuniformity. The singular terms arise from expanding
the denominator by the binomial theorem, which is justified only if

(1 —x) > (4.15)

1+ ¢

and hence not uniformly near the stagnation points & = —1.

4.5. Nonuniqueness; Eigensolutions

The verification just given is important, because for a round nose the
solution of the thin-airfoil problem is not mathematically unique. The
tangency conditions (4.4c), (4.5¢), etc., are singular at a round edge.
Therefore one is entitled to add to the solution any harmonic function
that is singular there but does not otherwise atfect the boundary condi-
tions. In the present problem one such function is given by a point source
located at one edge and a sink of equal strength at the other:

c JE—— P .

b = logVi = F 7 logV( TP T (6w
O wd vl

be = 5 [(A, B TE eI ’yg] (4.16b)

_C ¥ ¥
e e (169
It is evident that this leaves each of the problems (4.4), (4.5), etc.,
unaffected except at the leading and trailing edges, where the solution
for the ellipse is singular anyhow.
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This is our first example of an eigensolution. The role of eigensolutions
in inverse coordinate expansions was discussed in Section 3.10. Although
the present example is manifestly a parameter expansion, it can—because
it is a singular perturbation problem—be regarded also as an inverse
coordinate expansion. That is, the thin-airfoil solution becomes accurate
for distances from the edges large compared with their radius 2. The
eigensolution (4.16) represents ignorance of the details of the flow near
the edges.

The x-derivative of (4.16) is also an eigensolution for the elliptic
airfoil. It consists of dipoles at the leading and trailing edges (whose
strengths need no longer be equal in order to satisfy the upstream
condition). Similarly, an infinite sequence of successively more singular
cigensolutions—consisting of quadrupoles, octupoles, etc.—is formed by
repeated differentiation with respect to x.

In order to make the solution unique, the constant multiplying each
possible eigensolution must be determined. This can be attempted in
the following successively more sophisticated ways:

(1) Principle of minimum singularity. A very reliable bit of mysticism
asserts that in any case of nonuniqueness the correct solution involves
the weakest possible singularity. For the elliptic airfoil, this principle
serves to rule out all eigensolutions in the first-order solution, all except
sources in the second and third approximations, all except sources and
dipoles in the fourth and fifth, and so on. A justification of the principle
will appear later in Section 5.6 when we discuss matching with a local
solution of boundary-layer type.

(i1y Global conservation principle. It is sometimes possible to find a
conservation law that will serve to determine an eigensolution. For the
elliptic airfoil, the principle of conservation of mass serves to rule out
the source eigensolution (4.16). A convenient way of accomplishing this
is to work not with the velocity potential but with the stream function,
which assures that mass is conserved globally. Then the weakest admis-
sible eigensolution is a dipole rather than a source (see Exercise 4.1).
Together with the first method, this defers the indeterminacy to the
fourth approximation for the clliptic airfoil.

(iit) Matching with supplementary expansion. Later in this chapter we
generalize Prandtl’s idea of examining in detail the region of nonuniform-
ity. An essential feature of that procedure is the possibility of matching
with a supplementary asymptotic expansion valid in that region. This
process serves to rule out all eigensolutions in the thin-airfoil expansion
for the ellipse.
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In the preceding section we used none of these methods, but simply
compared with the known exact solution.

All these methods may fail in more complicated problems. An example
is the third approximation for the boundary layer on a semi-infinite flat
plate, which is discussed in Chapter VII. In that case it is perhaps
impossible, even in principle, to determine even the first eigensolution
short of solving the full problem. In such difficult problems, attempts
have been made to determine the first eigensolution by patching at an
arbitrary point with a different approximate solution (Imai, 1957a) or
by comparing with a numerical solution (Traugott, 1962).

4.6. Joukowski Airfoil; Leading-Edge Drag

The failure of the thin-airfoil expansion at a round edge means that
one cannot calculate the drag by integrating surface pressures. Indeed,
divergent integrals appear beyond the first approximation. The elliptic
airfoil obscures this matter because the effects of the leading and trailing
edges cancel by symmetry. We therefore consider instead a simple
profile with only one round edge.

Tosecond order asymmetrical Joukowski airfoil (Fig. 4.4a) is described

6EN y I'st - order

W Exact

y-‘ié(l—xwl—x-’
(a) (b}

Fig. 4.4. Symmetrical Joukowski airfoil. (a) Geometry. (b) Surface pressure.

by the thickness function 7(x) = (1 — x)V1 — a2 The thickness

ratio is & at midchord, and (3V3 4)e = 1.30e at the thickest point.
For the first-order streamwise velocity perturbation on the axis (4.10) gives

L €228 e ) Zoy o (417)

l al
ol 0) = — L L N 73
Pl ) “iq V1= &(x - ¢§)
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By continuing with the second approximation we obtain for the surface

speed |
4 - BV TP ek B BN YOV
i 1 = e(l — 2x) 5 (1 - 2x) - (4.18)

1 +«
and, from Bernoulli’s equation, for the surface pressure coefficient

_P—P. : y A3
p = —%—E,T = —2e(l -- 2x) — 2e*x | =%

4o (4.19)

The drag coefficient can be calculated by integrating the pressure over
the surface of the airfoil according to

1 N ~l — .
C, = éplf'zJ pdy =¢ J_l C(x)T'(x) dx (4.20)
However, substituting the thin-airfoil expansion (4.19) shows that the
second-order term is divergent at the leading edge. Keeping only
first-order terms gives a negative drag:

S g
Cy ~ 2¢* ’ (I — 2x%) \'}—_—:—’;d\v = —2me? (4.21)

Y1

This result is obviously wrong, for the drag must vanish according to
d’Alembert’s principle. Because first-order thin-airfoil theory fails to
predict the pressure rise ncar the stagnation point (Fig. 4.4b), it misses
a positive contribution to drag that would exactly cancel the thrust of
the remainder of the airfoil that we have just calculated.

Jones (1950) has shown that this leading-edge drag can be recovered
by calculating the drag not from surface pressures but with a momentum
contour that avoids the region of invalidity near the leading edge. It can
also be recovered by correcting the surface pressure near the edge using
methods discussed later; and only this method is successful in the second
and higher approximations.

"Thus one finds that the leading-edge drag to be added to the integral
of surface pressure in lincarized theory is the same for any round-nosed
airfoil as for our Joukowski profile. It is given in general terms by

Dig = YmpUta (4.22)

where a is the leading-edge radius, equal to 4¢2 for the Joukowski airfoil
of Fig. 4.4. This is just the drag of an infinite parabola of the same nose
radius, defined—following Prandtl and Tietjens (1934)—as the drag of
a nose section separated by a cut into which the ambient pressure
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penetrates, in the limit as the cut moves downstream to infinity (Fig.
4.5). That this should be the case is clear from the fact that as its thickness
vanishes any round-nosed airfoil is approximated by a parabola to an
increasing number of radii downstream from the leading edge. This role
of the osculating parabola will be exploited further in Section 4.8.

:> })a — ®

Fig. 4.5. Scheme defining drag of parabola.

A similar violation of d’Alembert’s principle occurs for lifting airfoils
of zero thickness. In that case, however, integration of the surface pres-
sures predicted by linearized theory vields a spurious drag rather than a
thrust. Thus for an inclined flat plate it evidently gives a resultant
normal force, which has a downstream component. The resolution of
this paradox is again associated with a singularity at the leading cdge.
The additional leading-edge thrust required to restore the drag to zero
can be found by the methods just described for the symmetrical airfoil
(von Karmdn and Burgers, 1935, pp. 51-52).

4.7. Biconvex Airfoil; Rectangular Airfoil

We consider two other shapes, involving stagnation edges that are
respectively sharper and blunter than those of the elliptic airfoil. First,
the thickness function 7(x) = 1 — a* describes a biconvex airfoil
formed of two parabolic arcs (Fig. 4.6).

y

T y=XE(-x2)
r ¢l f
U
—> —
|

Fig. 4.6. Biconvex airfoil.
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Proceeding as before gives for the first approximation
by — idhy, = 3(2 — xlog QJ) (4.23)
I /

At the sharp stagnation edges the perturbation velocity is logarithmically
infinite, behaving like ¢ log # even on the surface. Again this failure is
compounded in higher approximations. Thus to second order the
surface speed 1s found to be

% ~ 1+ 275(2 — xlog i—é%) 52[_32_(2 — xlog 1_4:—_2)

1 I +x

— —logt 77— — (1 — x"-)] (4.24)

This is singular like (¢ log 7)® at the stagnation points, and the nth
term is found to be singular like (¢ log )". Hence the expansion is invalid
within a distance of either edge of order e~1/°. Because this is smaller
than any power of ¢, it is usually negligible in practice; and at the trailing
edge the nonuniformity would be swamped by viscous effects. However,
it is of fundamental interest to understand and correct this minor
defect as well as the more serious one at a round edge.

The singularities are so weak in this example that no practical
difficulties arise. All eigensolutions can be excluded by invoking the
principle of minimum singularity, because even the weakest of them—
the source eigensolution (4.16)—is more singular at the stagnation points
than any term in the thin-airfoil expansion. Furthermore, the integral
(4.20) for the drag coeflicient is convergent. Thus the formal thin-airfoil
solution can be calculated to indefinitely high order for a sharp-edged
airfoil.

Second, consider the rather extreme case of a thin rectangular airfoil
(Fig. 4.7), which can be described by the thickness function 7'(x) ==
H(l — x*) = H(x + 1) — H(x — 1). Here H is the Heaviside unit
step function, which is zero for negative values of its argument and unity

y
f y=tEH(I-x2)
[
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Fig. 4.7. Rectangular airfoil.
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down within a distance from the leading edge of the order of the nose
radius a, which is proportional to 2 In that vicinity the airfoil can be
approximated by a parabola having the same nose radius. Moreover,
the approximation becomes better as the thickness is decreased, in that
it holds to a given accuracy over an increasing number of nose radii.

The exact surface speed on the parabola is easily calculated, or
extracted through a limit process from the result (4.14a) for the ellipse,
as

s
g="U, NV (4.28)
Here s is the distance into the edge, and {’; the maximum speed on the
parabola. The latter is obviously nearly equal to the free-stream speed
U, but its value will not be needed. Expanding this expression formally
for small values of the nose radius a (more precisely, for small values of
the ratio a s) yields the series

uqn _ Lz(l . _% . ) (429)

The quotation marks indicate that this is only a formal result. This
must be the result that would be given by thin-airfoil theory. It can in
fact be extracted from the second-order solution (4.13) for the ellipse.
The two terms shown here constitute the second approximation, because
the nose radius is of order 2. There is no term of order ¢ because the
first-order perturbation happens to vanish at the surface of a parabola.

We now claim that the ratio of these two expressions serves as a multi-
plicative correction factor that converts the formal thin-airfoil solution
“g” for the speed on any airfoil of nose radius @ into a uniformly valid
approximation §¢:

G- T gy (4.30a)

The reason is that near the leading edge, where the disturbances are
large, the exact speed on the airfoil is nearly that on the osculating
parabola. Far from the edge, on the other hand, the correction factor
approaches unity, so that the thin-airfoil solution for the airfoil is
recovered where it 1s valid.

It is possible to simplify this rule. The denominator has already been
expanded formally, so that no damage results from further expansion;
and the same is true of the thin-airfoil solution “‘¢” for the airfoil. Then
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if we recall that “q”’;/U is of the form | -}- O(¢), and retain only terms of
order €2, we obtain the simpler rule

92 $ “gy” a
b Fm ) (4.300)
Here the subscripts indicate that the formal second-order solution
“g,” is rendered uniformly valid to second order. This is to be understood
in the sense that both leading and secondary terms-—of relative order
e—are given correctly everywhere on the airfoil for the perturbation in
speed, or the pressure coefficient.

This rule was first deduced by Lighthill (1951) by quite different
reasoning that is described later in Section 4.12. He shows that it
applies also at angle of attack, and to cambered airfoils. In the latter
case, however, the perturbation is correct only to first order near the
nose. Henceforth we refer to (4.30b) as Lighthill’s rule.

As an example, we apply the rule to the leading edge of the elliptic
airfoil, for which “¢,” U is given by (4.13). With s = x - 1 and
a = ¢ we find

Y N
U N1 x4 Le

L= 2“") (4.31a)

(1 - e - 'iez
1 —x

The singularity at the leading edge has been removed, and replaced by
the proper zero. Of course a singularity remains at the trailing edge, so
that the solution is not symmetrical in x; but that too can be eliminated
by applying Lighthill’s rule again with s = 1 — a. This yields, after
further simplification, the fully uniform result

_ —
& :\/ L —o (e + de) (4.31b)

I~ | &1 le

The result is shown in Fig. 4.3 in comparison with the exact and the
thin-airfoil solutions, which displays its uniform validity.

It is instructive to interpret the above derivation of Lighthill’s rule in
the light of conformal mapping. If we seek to map a uniform stream
into the flow past an airfoil, the thin-airfoil approximation cannot cope
with the rapid changes near a round nose. However, we can use the
product of two mappings—from the uniform stream to the osculating
parabola, and from that parabola to the airfoil—and thin-airfoil theory
is adequate for the latter, although the former must be performed
exactly. The two terms in (4.30b) correspond to these two mappings.
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4.9. Local Solution near a Round Edge

We now reconsider the round-nosed airfoil from the point of view of
Prandtl’s boundary-layer theory. That is, we examine the details of the
flow in the region of nonuniformity by introducing magnified variables.
We thereby obtain a local solution that complements the thin-airfoil
series, and will be matched with it in the next section. The relationship
between this formal procedure and the preceding intuitive argument
will become clear in the course of the analysis.

For definiteness we consider the ellipse; it will be evident how the
results apply to other round-nosed airfoils. We study only the non-
uniformity at the leading edge; the trailing edge is treated in exactly the
same way. For simplicity we again discuss only the surface speed, but
the method can obviously be applied to the entire flow field. We examine
the second approximation and, in order to exhibit the effectiveness of
the method, suppose that it contains an unknown multiple of the source
eigensolution (4.16) in each term. According to (4.13) and (4.16) the
formal thin-airfoil series for the surface speed is then

%ZI*E‘IL— <

U ] —a?

\ 2 ,
C]—) ési(l : 2] _(;sz) - (4.32a)
Of course conservation of mass can be used, as discussed in Section
4.5, to show that C; == C, = 0. However, we want to show that this
follows from matching with the local solution, as is necessary in more
difficult problems.

Because the nonuniformity under consideration occurs at the leading
edge, it is convenient to shift the origin there (Fig. 4.2) by setting
s = x + 1. Then the ellipse is described by

Y= eVl — ¢ (4.33a)

and the thin-airfoil series (4.32a) for the surface speed may be written as

G tel - stci 5 - %52[5(12182; ™ s(zcj )

s 60 with = O() (4.32b)

This asymptotic expansion is invalid in the region where s = O(g?),
because there the third term is of order unity rather than small as
was assumed.

We aim to introduce new independent and dependent variables—
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denoted by capital letters—that are of order unity in the region of non-
uniformity. Evidently s is to be magnified by a factor 1 ¢, and the other
Cartesian coordinate y is treated similarly, because the region of non-
uniformity was seen to be circular. Thus we introduce the new
coordinates

S-Sy g— (4.34)

Yy = - \/ZS — EZA 2 (4’33b)

The dependent variable ¢ should be correspondingly magnified by
introducing @ = ¢ 2. However, this modification cancels out of the
present problem because both the differential equation and boundary
conditions are linear in ¢.

We now consider the result of letting ¢ tend to zero with the magnified
variables fixed. That is, as the thickness ratio vanishes we continually
magnify the vicinity of the leading edge in such a way that the nose
radius remains finite. In the limit the airfoil shape becomes

Yo~ 4+V2S  as e»0 with S =0O() (4.33c)

which is an infinite parabolic cylinder of unit nose radius. Laplace’s
equation is unchanged by our magnification of coordinates. Hence the
local problem is again that of potential flow past the osculating parabola

(Fig. 4.9).
y
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Fig. 4.9. Local flow past osculating parabola.

Additional boundary conditions are required to make the solution
unique. Clearly the flow should be symmetrical about the S-axis. On the
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other hand, it is not obvious that the flow far upstream should be uniform.
However, any other possibility involves a stronger singularity at infinity,
and can therefore be ruled out by the principle of minimum singularity
(Section 4.5). We cannot conclude, however, that the speed of the
oncoming stream is the original free-stream speed U'; we therefore denote
it again by ; and determine it by matching with the thin-airfoil solution.
Note that the value of U; was not required for deriving Lighthill’s rule
in the last section, because it canceled out.

The boundary-value problem for ¢(.S, V) can readily be solved for
the surface speed. However, the result is available from (4.28) as

g~ U, \/ — T as e—0 with S = 0() (4.35)

Thus we have two different asymptotic approximations to the solution
for small e. The thin-airfoil expansion (4.32b) is valid except near the
leading edge, where the local solution (4.35) applies.

It is helpful to introduce now some terminology that will be extended
in the next chapter. Following Kaplun (1954) and Lagerstrom and Cole
(1955) we call the thin-airfoil series the outer expansion. It is the result
of letting ¢ tend to zero with the outer variables s and y (or x and ¥)
fixed. Similarly, the local solution is the first term of the inner expansion,
which is the result of letting & tend to zero with the inner variables S and Y
fixed. (The subscript on U is now recognized as standing for “‘inner.”)

4.10. Matching with Solution near Round Edge

In general, as in this example, the inner and outer expansions comple-
ment each other, one being valid in the region where the other fails.
An important feature of this complementarity is that one can match the
two expansions. Matching is essential to the success of the method, and
will be discussed in detail in the next chapter. For the present we simply
assert that here, as in many problems, we can apply what we will call
(Section 5.7) the asymptotic matching principle:

The m-term inner expansion of (the n-term outer expansion)
— the n-term outer expansion of (the m-term inner expansion). (4.36)

Here m and n may be taken as any two integers, equal or unequal. By
definition, the m-term inner expansion of the n-term outer expansion is
found by rewriting it in inner variables, expanding asymptotically for
small ¢, and truncating the result to m terms; and conversely for the
right-hand side of (4.36).
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We now apply this principle to find the unknown constants C; and C,
in the outer expansion (4.32) and U in the inner solution (4.35). At the
outset, we know only the first term of the outer expansion, representing
the undisturbed stream, and no terms of the inner expansion. We there-
fore choose m = n = 1, in order to find a first approximation to the
effective free-stream speed U, in the inner problem. It is convenient to
systematize the procedure as follows:

1-term outer expansion: g~U (4.37a)
rewritten in inner variables: = U (4.37b)
expanded for small e: =U (4.37¢)
I-term inner expansion: =U (4.37d)
.28
1-term inner expansion: g~ b’ir\,e’ T35 (4.38a)
ritten in outer variables: == U, /f’fz—;: (4.38b)
rewritte 2 : N
. 1 &
expanded for small e: = Lz-(\l i + ) (4.38¢)
1-term outer expansion: =U; (4.384)

By equating (4.37d) and (4.38d) according to the matching principle
(4.36) we obtain
U =U (4.39)

That is, to first order the effective free-stream speed for the inner solution
is the actual free-stream speed, which is plausible physically. Exercise
4.2 shows that this matching cannot be carried out if the inner solution
is singular at infinity, which justifies our appeal to the principle of
minimum singularity.

We now reverse the process to find the second term in the outer
expansion. Taking m = 1 and #n = 2 we have

28
I-term inner expansion: g~ U 38 (4.40a)
ritten in outer variables: =U /___2&___ (4.40b)
rewritte : Ny
Y 7 Let
(" expanded for small e: = L(l —i5 T ) (4.40c¢)
2-term outer expansion: = U/ (4.40d)
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2-term outer expansion: g~ U;l + s[l —+ @%SJ: (4.41a)
rewritten in inner variables: = Ul vell = LS W (4.41b)
I 252 — 22S))) '
expanded for small e: = L’(—i% + 1 - ) (4.41¢)
. 5 €y if C, # ?
I-term inner expansion: = U128 17 (4.414)
( I if ¢ = 05

By comparing (4.40d) and (4.41d), we find that they match only if C,
vanishes; there can be no source cigensolution in the first-order thin-
airfoil solution.

We now reverse the process once more to find the second term in the
inner expansion. With m = 7 — 2 we have

2-term outer expansion: g~ U(l = &) (4.42a)
rewritten in inner variables: = U(l +¢) (4.42b)
expanded for small e: =U(1--¢) (4.42¢)
2-term inner expansion: = L(1 — &) (4.424d)

This last result indicates that the second term in the inner expansion
must be of order e. Now it is clear from (4.33b) that the error in
approximating the nose of the ellipse by the osculating parabola (4.33c)
is only of order ¢2. Hence the inner solution is that for a parabola to
second as well as first order, provided that U, is refined. We find

T . 7 /ﬁ‘ 28
2-term inner expansion: g~ Li\’/ 155 (4.43a)
rewritten in outer variables: = U, /—27: (4.43b)
N 2s e '
) . 1 &
?expanded for small &: = Di(l — - — + ) (4.43¢)
4 s )
\ 2-term outer expansion = Ui“/} (4.43d)
and matching shows that to second order
Ui = Ul +¢) (4.44)

Physically, this means that although the nature of the flow near the
leading edge depends upon only the local airfoil shape, and is to second
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order that for the osculating parabola, the effective free-stream speed
for that parabola differs slightly from the actual free-stream speed. It is
increased by the effects of relatively remote parts of the airfoil, which
may be regarded as formed by adding sinks to the parabola. Thus the
parabolic nose is flying in a stream that has been speeded up in
order to flow past the rest of the airfoil.

We could now return again to the outer expansion by choosing m 2
and n —= 3, and show that matching requires C, to vanish; therc are no
source cigensolutions in the second-order thin-airfoil solution. Dipole
and higher-order eigensolutions would be ruled out by the same process.

This process could in principle be continued indefinitely. Beginning
with the next step, however, it must be recognized that the inner problem
is no longer that for a parabola, but for the more complicated shape
obtained by expanding (4.33b):

. p— Lo 1o,
Vi~ VRSl ges st o)

as >0 with §— O() (4.45)

and retaining the required number of terms (Fig. 4.10). T'he solution
can be found by making a coordinate perturbation of the basic flow past the

Y=y2$

V25 (1-+£%)

V25 (I-+e25- e45?)

Fig. 4.10. Successive inner expansions for shape of ellipse.

osculating parabola. Of course the inner expansion (4.45) for the airfoil
shape diverges for large S, in fact for S > 2 ¢2. Hence the inner expansion
will be nonuniform at S = 2. It can be extracted from the known
exact solution by introducing inner variables and expanding, which
yields

9 _ I --e 2S5 3. S
v // (1 — e2S) V1 228 [1 et 4 + 28
VI s e
C3s S S58S —23)
s g s (4.46)
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Singularities at .S = o0 are seen to appear beginning with the fifth term
of the inner expansion. This divergence is of no concern, because the
inner expansion is used at nowhere near such great distances.

4.11. Matching with Solution near Sharp Edge

We now apply the same technique to a sharp edge. The example of the
biconvex airfoil (Section 4.7) shows that sharp edges lead to logarithmic
singularities in the thin-airfoil expansion. These are so weak that without
devoting any special attention to them one can calculate an unlimited
number of terms in the series. However, it is of interest to understand
the source of the logarithms by examining the flow in the immediate
vicinity of the edge.

For simplicity we consider only the leading edge of the biconvex
airfoil, the extension to any sharp edge being evident. With the origin
shifted to the leading edge (Fig. 4.6) the airfoil is described by

y = +e(2s — s?) (4.47a)

The thin-airfoil expansion (4.24) was seen in Section 4.7 to fail within a
distance s = O(e~'") of the leading edge. Hence appropriate magnified
inner variables are

S = sel’e, Y = yel/e (4.48)
in terms of which airfoil is described by

Y = 4 628 — e-1/eSY) (4.47D)

As ¢ tends to zero the second term vanishes faster than any power of e.
Hence whereas a round edge is locally parabolic only to second order, a
sharp edge is approximated to any order by a wedge (Fig. 4.11). The
wedge angle is vanishingly small, our airfoil being approximated by

Y~ =28 as e—0 with S = O(1) (4.47¢)

i

Fig. 4.11. Inner solution for sharp-edged airfoil.
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The appropriate inner solution is a symmetric potential flow past this
wedge with the weakest possible singularity at infinity. It can be found,
as indicated in Fig. 4.12, by a familiar elementary conformal transforma-

t= [Za"”"”‘] #nw

n Y
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—_—
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Fig. 4.12. Conformal mapping for flow past wedge.

tion of uniform parallel flow. It can equally well be found by separation
of variables in polar coordinates, which is a method that can be extended
to three-dimensional problems. Thus the inner solution for surface speed
is found to be

g ~ U,S tan—lae/ix — tan=1ze) as e—>0 with S = O(1) (4.49)

Here, in contrast to the round nose, even the first term of the inner
expansion diverges at infinity. It gives unbounded velocities as S — o,
so that the factor {'; cannot be interpreted as an equivalent free-stream
speed, but merely as the surface speed at S — 1. As for the round nose,
U; can be found by matching with the outer expansion of thin-airfoil
theory.

In order to match, we need the outer expansion of the inner solution
(4.49). This requires forcing a small fractional power into a formal
series in powers of the exponent, and is accomplished using the rule that

s¢ == exp(log s¢) = exp(elogs) = 1 + elogs + Letlog?s 4 -+ (4.50)

which is not uniformly valid for small 5. It fails where ¢ log s = O(1), so
that s = O(e=/*). This result explains the mysterious occurrence of
logarithms in the thin-airfoil expansion for a sharp edge.

In matching the two expansions we need not, as in the case of the round
nose, work up from one approximation to the next, but can at once treat
any desired approximation. Let us consider the second approximation.
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Then the matching principle (4.36) is to be applied with m = n = 2,
for which we find

2-term outer expan-

AT D \ S

sion: g~ U+ 7—78[2 (1 — ) log ﬁ?]s (4.51a)
rewritten in \ ) / e s 7,

inner variables: = U(l . ;3[2 + (1 —e1=S) logm] \ (4.51b)
expanded for v 5 ) |

small e: = U[(l —Z) =262 + log S — log2) ] (4.51c)
2-term ir?ner iy 2 2 , - st

expansion: =U [(1 — ;T) - 7;5(2 —log S — log )] .
rewritten in ,

. 2 s
outer variables: = U [1 - 1—78(_2 — log —2-)] (4.51e)
2-term inner

expansion: q ~ U,Suant2eriz—tan-l 2¢) (4.52a)
rewritten in

outer variables: = Uj(el/es) 1an71t 26/t~ tan~1 2¢) (4.52b)
expanded for 5 ) ‘

small e: — ¢ 'ﬂu[l ~ Zeflogs — =) = ] (4.52¢)
2-term outer 5 )

expansion: = ¢ "L',[l - ;Ta(log 5 - 7—7)] (4.52d)
rewritten in ‘

. 2 2 L2
inner variables: = 7L ,[( 1 — 7—7) + ;s(log S - 7—7)] (4.52¢)

The rule (4.50) has been used in obtaining (4.52¢). The. additional last
step (4.51¢) or (4.52e) is required because the comparison of the two
results must be made in terms of either outer or inner variables alone.
Then equating (4.51e) and (4.52d) yields (but see exercise 4.5)

Uy = e¥muft = 262 —10g2 — 3} 4 -] (4.53)

This completes the inner expansion (4.49) to second order. Tl}e rea§er
can, using (4.24), find the next term in (4.53) by matching with
m=n = 3.
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4.12. A Shifting Correction for Round Edges

We return to the singularity at a round edge, and describe an alter-
native way of correcting it. This serves to introduce a second general
method of handling singular perturbation problems, which is discussed
in detail in Chapter VI.

Consider the simplest round-nosed shape, the parabola. We must
examine the complete velocity field, because the surface speed suffers
distortion through transfer of the boundary conditions. For the parabola
¥ = Z- &4/2x of nose radius &2 the first-order complex velocity can be
extracted from that (4.12) for the ellipse as

ie

N Ve

b, —id, == | O(&?), T =N 41y (4.549)
We compare with the corresponding exact result which, by conformal
mapping or separation of variables in parabolic coordinates, is found to be

ie
V2(z — Le?)

b —id, =1 - (4.55)

We see that the first approximation (4.54) becomes exact if the origin of
coordinates is simply shifted by $¢%. This removes the square-root
singularity from the vertex and places it inside the parabola at the focus,
which is the singular point of the conformal mapping. T'hus thin-airfoil
theory is seen to give the exact source distribution for a parabola, but
displaced by half its nose radius.

This remarkable propertv must hold approximately for any round-
nosed airfoil. For that reason Munk (1922) advocated modifying the
abscissae to shift the leading edge of any profile by half its radius. It is
clear that a simple translation is not correct for a finite airfoil, because
that would leave the trailing edge misplaced. For the ellipse of Fig. 4.2,
a uniform contraction of the x-coordinate evidently provides the required
shift at both ends, as do an unlimited number of more complicated
strainings. T'o retain the benefits of complex-variable theory, we strain
instead the single variable ¢ — x - Iy,

Lighthill (1949a) has proposed the following principle for finding
strained coordinates that restore uniform validity in a wide class of
singular perturbation problems:

Higher approximations shall be
no more singular than the first, (4.56)

We illustrate this principle by application to the thin-airfoil expansion
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for the ellipse. It is necessary to examine the third approximation,
because the second is already no more singular than the first. For this
reason the straining is of order &2 rather than .

Extending the first approximation (4.12) yields the thin-airfoil expan-
sion as

b b, =1 (e et )1y

L 46 \/ i+ Oe") (4.57)

Now suppose that, as in the case of the parabola, this result becomes
uniformly valid if = is replaced by a slightly strained coordinate {. Set
3= — &%y(L) + (4.58)

where the straining function 2, , which was — } for the parabola, is to be
determined. Making this substitution in (4.57) and expanding again in
powers of ¢ yields

b, — i, =1 — (e — & = &%) (I_V‘C’

L. 2 1 - 2,
2°\zg--1(g g"" —‘)_ (4.59)

Now the third term will be no more singular than the second at { = =+ 1
(and also at { = 0) if we set

w() = — 3 or—- 3 or - (4.60)

Consider for simplicity the first of these possibilities, which provides
the uniform contraction of abscissae already proposed. Then the first-
order solution becomes

$r —id, =1 el - \ o i) (4.61a)

where
7= — el 4+ o (4.61Db)

Although one can eliminate { here to obtain an explicit solution, that is
not possible with any other choice of z, . In general, one must be content
with an implicit representation of the solution in terms of { as a para-
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meter. This approximation is uniformly valid to first order, as can be
verified by comparing with the exact solution:

2

b, i, =1 - S (1 V - _z E) (4.62)
Because we have manipulated the solution, rather than introducing
the straining into the original problem, the above procedure is really a
modification of Lighthill’s technique suggested by Pritulo (1962); sce
Exercise 6.4.

Applying his technique to a general profile led Lighthill (1951) to the
rule (4.30b) for correcting thin-airfoil theory at round edges. However,
in contrast to our previous derivation of that rule, Lighthill’'s method
1s not successful for edges that are sharp, square, or in fact of any shape
other than round.

EXERCISES

4.1. Thin-airfoil theory using stream function. Reproduce the analysis of
Sections 4.2 and 4.3 using the stream function instead of the velocity potential.
Carry out the solution for the elliptic airfoil, and verify that indeterminate
source eigensolutions are automatically excluded.

4.2. Matching and the principle of minimum singularity. The local problem
of symmetric flow past an osculating parabola (I'ig. 4.9) has eigensolutions
that are singular at infinity. Show that the lca%t singular of them adds to the
surface speed a multiple of [S? (I -~ 25)]' 2. This can be done, for example,
by introducing parabolic coordinates & and 7 and seeking a solution of the
potential problem as a polynomial in (¢ - 77). Then show that matching with
the thin-airfoil solution for any round-nosed profile excludes this cigensolution,
in accord with the principle of minimum singularity.

4.3, Matching with local solution for square edge. Introduce inner variables
appropriate to the leading edge of the rectangular airfoil of Iig. 4.7. Show that
the inner solution is that for flow past a semi-infinite rectangular slab of thick-
ness 2, on whose sides the surface speed is given in terms of a parameter ¢

(Milne-Thompson 1960, Section 10.6) by
q = UZ-V T where 7S = V12 — 1 — cosh-11¢

Match with the outer solution (4.27) to show that the coeflicient of the eigen-
solution is € = 1 log(d=¢), so that the asymptotic sequence for the thin-

)
airfoil expansion (4.2) contains logarithms beginning with ¢*loge.
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4.4. Correction rule for sharp edges. Devise a multiplicative correction rule
for sharp edges, analogous to Lighthill’s rule (4.30b) for round edges. Discuss
the prospects for treating square edges similarly, and also sharp tips on slender

axisymmetric bodies.

4.5. Exact solution for biconzex airforl.  Milne-Thompson (1960, Section 6.51)
gives the exact solution for symmetrical potential flow past a biconvex profile
formed by two circular arcs. To what order can these be replaced by parabolic
arcs in thin-airfoil theory ? In the coordinates of Fig. 4.6 the exact surface speed is

g 4 coshyn — cosnm2

U n* 1 --cosh2y/n
where

, n=-—cotle
coshy — cos nmi2 w

Extract from ¢his the outer and inner expansions, and compare with the results
of Sections 4.7 and 4.11. Show that equating (4.51d) and (4.52¢) instead of
(4.51¢) and (4.52d) does not give (4.53). Explain the reason for the difference,
and discuss its implications.

4.6. Block matching for elliptic airfoil. Show that instead of matching step
by step as in Section 4.10, one can at once match the 3-term outer expansion
(4.32) with the 2-term inner expansion (4.35).

4.7. Nose-correction rules for bodies of revolution. Devise a rule analogous to
(4.30b) for round-nosed bodies of revolution in axisymmetric incompressible
flow. Use the fact that the surface speed on a paraboloid of revolution is the
same as on a parabolic cylinder. Apply the rule to the ellipsoid of revolution
formed by rotating Fig. 4.2 about the x-axis, for which slender-body theory
(Van Dyke, 1959) gives the surface speed as

9y elee 2 My ] Ot log2
L1+ [logg S1 == x;_,)] O(e* log? ¢)
Compare with the exact result
q 1 +é&(sechle — V1 — )i(V1 — & — e sechle)
T e e
(‘1 T 1 — x3)

In the same way devise a rule for treating sharp-nosed bodies of revolution,
and apply it to the spindle formed by rotating Fig. 4.6, for which slender-body
theory gives

41 62[2(1 — 342) log N 11x2] 4 O(et log? €)

U PV
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4.8. Small-disturbance theoryv for paraboloid of revolution. Consider axi-
symmetric incompresstble flow past the paraboloid of revolution » = \/28%,
Derive the counterpart of (4.4) for the first perturbation, but do not transfer
the tangency condition to the axis. Solve by separating variables in paraboloidal
coordinates, showing that the disturbances are of order €2 rather than ¢, and that

Va2

¢~ — ée'-’ log

Verify that this result becomes exact if the origin is shifted downstream by
half the nose radius.

Expand the above approximation formally for 7 small, of order ¢, to obtain
the slender-body solution, and verify that it satisfies the approximate equation
&, - ¢, r = 0 of slender-body theory. Improve this result by iterating upon
the full Laplace equation to find the second-order slender-body solution as

-2 2

5 / af 2 r
b ~x — petlog 55— ée“[E“f(-\‘) - T]

ey

Deduce the form of the function f by dimensional reasoning, using the fact
that #? is the only characteristic length in the problem, thus completing the
solution except for an unknown multiple of an eigensolution. Interpret this as
the slender-body form of a particular solution of Laplace’s equation. Find its
constant by comparison with the exact solution. [See Chang (1961) for a
discussion of the role plaved here by the artificial parameter ¢, and application
of the method of matched asvmptotic expansions. For the paraboloid in sub-
sonic compressible flow, sce Van Dyke (1958c).]

4.9. Subsonic thin-airfoil theory. Deduce the first- and second-order problems,
corresponding to (4.4) and (4.5), for symmetric subsonic compressible flow,
where the Laplace equation (4.1a) is replaced by (2.19a). Show that a change
in vertical scale (the Prandtl-Glauert transformation) reduces the first to an
equivalent incompressible problem. Verify that a general particular integral
(Section 3.7) for the second-order equation is given by (Van Dyke, 1952)

+ 1 M2 +1  M?
312[(1 Ly T J’[Z)sbl - }/*4* T—_’A_ﬁyd’u]‘#’w

Calculate the second-order solution for the wavy wall y = ¢ sin x. Calculate
the surface pressure cocfficient from

Cp = 26y, e [(1 = M)y, + b, + 240,] + ..
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and check that it satisfies the second-order similarity rule for airfoils (Hayes,

1955):
If at

M=0 C,= e Cpp(x) + e2Cpox) + == Chapter 1V

hen for

t o a THE METHOD

M0, €, =——Cpuly) — ¢ (D Lo M) Chalx) =

S RV A Al - ey OF MATCHED ASYMPTOTIC

EXPANSIONS

5.1. Historical Introduction

We introduced in the preceding chapter a method for treating singular
perturbation problems that is a generalization of the boundary-layer
theory of Prandtl (1905). "T'his has in the past been called the method of
“inner and outer expansions” or of “double asymptotic expansions.”

We prefer to follow Bretherton (1962) in speaking of the method of
matched asymptotic expansions.

The ideas underlying the method have grown through the vears. It
was being used in the 1950’s by Friedrichs (1953, p. 126; 1954, p. B-184)
and his students. It was systematically developed and applied to viscous
flows at the California Institute of Technology. Kaplun (1954) introduced
the formal inner and outer limit processes for boundary-layer theory,
and the corresponding inner and outer expansions. Later, in studying
flows at low Reynolds number, Kaplun and Lagerstrom (1957) made a
penetrating anal_\sm of the matching process (see also Lagerstrom,
1957). Kaplun (1957) used those ideas to gain deeper insight into the
resolution of the Stokes paradox for plane flow at low Reynolds number.
Lagerstrom and Cole (1955) evaluated the method in comparison with
new exact solutions of the Navier-Stokes equations for a sliding and
expanding circular cylinder. Coles (1957) applied it to some special
solutions for the compressible boundary layer.

Proudman and Pearson (1957) applied this expansion method to
treat flow past a sphere and circular cylinder at low Reynolds number.
Goldstein (1956, 1960) and Imai (1957a) gave the first correct extension
of Blasius’ boundary-layer solution for the semi-infinite flat plate.  See
Ting (1959) solved the riddle of the course of the viscous shear layer Note
between two streams of different speeds. 16

Following this developmental period, the method of matched
asymptotic expansions was applied to a variety of problems in fluid

77
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mechanics. Most of the earlier applications were to viscous flows. For
example, Germain and Guiraud (1960, 1962) and Chow and Ting (1961)
calculated the effect of curvature upon the structure of a shock wave.
Murray (1961) and Ting (1960) found the effect of external vorticity
upon the boundary layer near and far from the leading edge of a flat
plate. Chang (1961) clarified the behavior of viscous flow far from a
finite body. Flows at low Reynolds numbers have been analyzed for
cllipsoids by Breach (1961), for a spinning sphere by Rubinow and
Keller (1961), for a circle in shear flow by Bretherton (1962), and so on.

The method is equally successful for inviscid flows. The preceding
chapter gives examples in incompressible flow. Cole and Messiter (1957)
have studied transonic flow past slender bodies. Although the method
appears to be less popular in the Soviet Union, Bulakh (1961) has used
it to correct linearized supersonic conical flow and its higher approxima-
tions in the vicinity of the bow shock wave. Similarly, Fraenkel and
Watson (1964) have attacked the “pseudotransonic’” flow past a triangular
wing that occurs when the bow wave lies close to the leading edge. Yakura
(1962) has analyzed the entropy layer produced by slightly blunting the
tip of a body in hyvpersonic flow.

Since 1960, applications of the method have proliferated in many
fields of fluid mechanics, as well as in other branches of applied mathe-
matics. Some recent examples are discussed in later chapters of this
book.

5.2. Nonuniformity of Straightforward Expansion

Before we discuss the details of the method of matched asymptotic
expansions, it 1s useful to inquire how singular perturbation problems
arise. What is the source of the nonuniformity > Can we predict whether
a given physical problem will lead to regular or singular perturbations?

The classical warning of singular behavior is familiar from Prandtl’s
boundary-layer theory. A small parameter multiplies one of the highest
derivatives in the differential equations. Then in a straightforward
perturbation scheme that derivative is lost in the first approximation so
that the order of the equations is reduced. One or more boundary
conditions must be abandoned, and the approximation breaks down near
where they were to be imposed. This happens except in the unlikely
circumstance that the original boundary conditions are consistent with
the reduced cquations.

It is often helpful to examine linear ordinary differential equations as
mathematical models that illustrate the essential features of more
complicated problems. A simple model that illustrates loss of the highest
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derivative in boundary-layer theory is given by Friedrichs (1942) as

&f - df
e Gk = fO) =0, f1)- | (5.1
T'he exact solution is
1 o SIE
fvie) =(1 — a) t;—l — av (5.2)

However, setting « — 0 reduces the differential equation to first order, so
that both boundary conditions cannot be satistied unless it happens that
a — 1. The exact solution shows that the condition at v+ — 0 must be
dropped. Then the approximate solution for small ¢ is

ey ~1 -a) - ax (5.3)

As indicated in Fig. 5.1, this is a good approximation except within
the “boundary layer” where v = O(¢). Introduction of a magnified
inner coordinate .\ appropriate to that region by setting

fvie) = F(Xie), X = >-4)
&€
transforms the original problem (5.1) to
d*F dF 1
W - I\—, = ae, F(O) = 0, }'(—g- =1 (5-5)
I
Outer
flxE) // Exact
e
A Inner
O 1
0 0.5 I

X

Fig. 5.1. Solution of model problem.
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If we now set ¢ = 0, the solution of the differential equation that
satisfies the inner boundary condition is any multiple of (I — e™%).
Imposing the outer boundary condition would give the multiplicative
factor as unity, but the exact solution shows that this is incorrect. The
outer boundary condition must be abandoned for the inner solution
just as the inner condition was dropped from the outer solution. Instead,
the inner solution must be matched to the outer solution using the
matching principle (4.36). Thus one finds the uniform first approximation
for small e:

g(l - a) - ax as £—>0 with x>0 fixed (5.6a)
s €) ~ '((1 Ca)(l —eX)  as e—>0 with X :% fixed (5.6b)

The warning provided by loss of a highest derivative is more often
than not absent from a singular perturbation problem. In the thin-airfoil
theory of Chapter IV, the nonuniformity arises not from the differential
equation but from the boundary conditions. Likewise, for viscous flow
at low Reynolds numbers the highest derivatives are all preserved in the
approximate equations of Stokes; the nonuniformity is associated rather
with the infinite extent of the fluid. Evidently it would be useful to have
a more reliable indication of nonuniformity.

5.3. A Physical Criterion for Uniformity

In physical problems a more general warning of singular behavior
can be based upon dimensional reasoning. We have seen that inherent
nonuniformity will be suppressed by exceptional boundary conditions,
so that one can give only necessary and not sufficient conditions for
nonuniformity. We therefore state the following rule instead as a positive
test for uniformity:

A perturbation solution is uniformly valid in the space and
time coordinates unless the perturbation quantity e is the (5.7)
ratio of two lengths or two times.

This criterion may be understood by considering first a parameter
perturbation. The geometry of the problem will be characterized by a
typical major dimension that we may call the primary reference length.
Examples are the radius of the circular cylinder in Chapter 11, and the
chord length of the thin airfoil in Chapter IV. This length is the natural
basis for forming dimensionless coordinates-—a characteristic speed also
being required in unsteady flows—and these constitute the straightfc:-
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ward outer variables. Nonuniform behavior is possible only if the para-
meters in the problem provide another secondary reference length whose
ratio to the first tends to zero or infinity as ¢ vanishes. This second length,
if properly chosen, is the basis for the inner variables.

A familiar problem involving two disparate lengths is potential flow
past a thin round-nosed airfoil. The geometry is characterized by the
chord length except close to the leading edge, where it is dominated by
the nose radius. Since the ratio of these two lengths vanishes with the
square of the thickness ratio, our criterion (5.7) suggests that the thin-
airfoil solution could be singular. In Chapter IV this possibility was
seen to be realized, outer variables being based on the chord and inner
variables on the nose radius.

Our criterion shows that a coordinate perturbation is never safe from
nonuniformity in the remaining coordinates. The latter may be made
dimensionless using either the primary reference length or the pertur-
bation coordinate; and because the ratio of these two lengths tends to zero
or infinity, they provide the scales for an inner and an outer expansion.

The following are examples of parameter perturbations that involve
only one characteristic length scale, and are therefore necessarily regular
according to our criterion. Slightly compressible flow past a circle
(Section 2.4) contains the radius as the only characteristic length, the
perturbation parameter being formed from a ratio of speeds or energies
rather than lengths. The slightly distorted circle in potential flow
(Section 2.3) involves two lengths, but thev are of the same order of
magnitude, their ratio approaching unity rather than zero or infinity
in the hmit ¢ — 0.

The following parameter perturbations involve two disparate lengths,
and do as a consequence exhibit singular behavior (Fig. 5.2). A lifting
wing is characterized by its chord and its span, and their ratio vanishes

A o
[ = @ |
>icte

Fig. 5.2. Singuiar perturbation problems involving two disparate lengths.
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in Prandtl’s lifting-line theory (cf. Section 9.2) and becomes infinite in
the slender-wing approximation. A body in viscous flow is characterized
by not only a geometric dimension, but also the viscous length v ]
and their ratio 1s the Revnolds number, which vanishes in Stokes flow
(Chapter VIII) and becomes infinite in boundary-layer theory (Chapter
VII). This example illustrates that the secondary reference length is not
always a geometric dimension.

The following arc some coordinate perturbations that are singular
(Fig. 5.2). Viscous supersonic flow over a cone or a wedge (including the
flat plate) can be solved approximately for distances from the vertex
large compared with the viscous length v U Flow of a gas undergoing
vibrational or chemical reactions can be treated similarly using a charac-
teristic relaxation length, as can the etfect of slight blunting. T'he impulsive
start of a body through viscous fluid can be expanded in powers of time,
referred to a characteristic length and speed. Viscous flow far from a
body can be expanded in inverse powers of the radius, referred to a
typical dimension.

Although the following examples involve two disparate lengths, they
are nevertheless regular perturbation problems. Potential flow past a
wavy wall, a cusp-nosed airfoil, or any thin shape free of stagnation points
1s a regular perturbation in the thickness parameter. Uniform shear
flow past a circle (Section 2.2) shows the superficial symptoms of non-
uniformity at infinity, in that the ratio of the perturbation to the basic
solution in (2.11) grows like er; but the result is exact and therefore
uniformly valid. However, any other shear distribution would lead to a
singular perturbation problem (Exercises 2.4 and 5.7). In an inviscid
fluid the expansion for flow far from a bodyv is regular, as is that for an
impulsive start. Even the archetypical nonuniformity of Prandtl’s bound-
ary-layer theory disappears if in place of a fixed solid surface one
prescribes a distensible skin moving at just the speed of the potential
flow.

A problem may involve more than two disparate lengths, associated
with a multiple limit process; then multiple nonuniformities are possible.
In the case of three layers one may speak of the outer, middle, and inner
expansions. An example is viscous flow at high Reynolds number and
high or low Prandtl number, where the thermal boundary layer is much
thicker or thinner than the viscous layer. An inviscid example is analyzed
in Section 9.9.

A coordinate perturbation may sometimes be replaced by a parameter
perturbation. For example, the expansion for distances far from the tip
of a blunted wedge (I'ig. 5.2) may be regarded instead as the solution
for a wedge of finite length whose nose thickness tends to zero (Section
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9.9). Thus in conical geometry an angle plays the role of a length.
Consequently, nonuniformity is possible in conical flows if the pertur-
bation parameter is the ratio of two angles. Examples are a flat elliptic
cone, where the straightforward perturbation solution evidently fails at
the leading edges just as in thin-airfoil theory, and a circular cone at
infinitesimal angle of attack, which exhibits near its surface the vortical
layer of Ferri (1950).

5.4. The Role of Composite and Inner Expansions

We have seen that a singular perturbation flow problem typically
involves two disparate lengths. s a result, the straightforward perturba-
tion solution with coordinates referred to the primary reference length
fails in regions where the secondary reference length is the relevant
dimension. The secondary reference length is not always the obvious
one. It is clearly the chord for a wing of high aspect ratio, the thickness
for a flat-nosed airfoil, and the viscous length v { for flow at low Reynolds
number. However, at high Revnolds number it is the square root
of the product of the viscous and geometric lengths. For a round-nosed
airfoil it is not the thickness but the nose radius, which is propor-
tional to the square of the thickness divided by the chord. For a thin
airfoil in supersonic flow (Section 6.4) it is the mean radius of curvature
of the profile, which is proportional to the square of the chord divided by
the thickness. The sharp-nosed airfoil in subsonic flow is a delicate
borderline case between uniformity and nonuniformity in which the
region of non-uniformity, being exponentially small, is not directly
related to any physical dimension. A similar observation applies to the
vortical laver on an inclined cone in supersonic flow.

The straightforward perturbation solution yields an asymptotic
expansion of the form

fle, v, 55 6) ~ z d,(e)f . (x, v, ®) as e—0 with v, = fixed (5.8)

Here the §,(¢) are an appropriate asymptotic sequence, and v, y, & are
the coordinates made dimensionless using the primary reference length.
'T'his expansion is valid wherever the functions f, are regular. They will
become singular at any point within the flow field where phenomena
arec dominated by the secondary rather than the primary reference
length. This point lics at infinity if the secondary length is the larger.
A modified expansion, in order to be uniformly valid, must depend also
upon the coordinates made dimensionless by the secondary reference
length. Because the ratio of primary and secondary lengths is a function
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of &, this amounts to depending also upon ¢. Thus a uniformly valid
expansion must have the more complicated form

flx, v, z5e) = z o.(e)g. (v, v, 55 e) uniformly as ¢ -»0 (5.9)
Because the perturbation parameter ¢ now appears implicitly in the
function g, as well as explicitly in the asymptotic sequence §,, this is
not an asymptotic expansion in the usual sense. We call it a composite
expansion. Such expansions have been discussed in connection with
singular perturbation problems by Erdélvi (1961), who calls them
“generalized asymptotic expansions.” ‘There are two objections to
working with composite expansions. First, theyv are difficult to manip-
ulate; evidently such familiar operations as cquating like powers of &
must be reconsidered and, as will be seen later, a composite series is not
uniquely determined. Second, they unnecessarily combine the compli-
cations of both the straightforward expansion and the region of non-
uniformity (sce, however, Sections 10.3 and 10.4).

Itis simpler to isolate the difficulties associated with the nonuniformity
by constructing a supplementary inner expansion valid in its vicinity,
This is accomplished by introducing new inner coordinates that are of
order unity in the region of nonuniformity. Then the inner expansion
has the form

fx v 58) ~ D, A F (N, 2) as 60 with N, ¥, Zfixed (5.10)

We always denote inner variables by capital letters. Here the asymptotic
sequence 4, (¢) must be allowed to differ from the asvmptotic sequence
0,(¢) for the outer expansion; often thev are identical, but Section 6.3
gives an example in which they are different. If the region of non-
uniformity is the neighborhood of a point in the finite plane, the inner
coordinates .\, Y, Z are ordinarily the coordinates made dimensionless
using the secondary reference length. If the nonuniformity occurs
along a line, as in boundarv-laver theory, only the normal coordinate is
changed. If it occurs at infinity, the coordinates must sometimes be
stretched by ditferent functions of ¢ in different directions. Like the
outer expansion, the inner expansion is a conventional asymptotic series,
so that the usual operations are valid.

It 1s often a useful preliminary to introducc dependent as well as
independent variables that are of order unity in the inner and outer
regions, so that the leading terms in the asvmptotic sequences §, and
4, are unity. The degree of stretching is in general ditferent for the
independent and dependent variables. Following Kaplun (1954) and
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Lagerstrom and Cole (1955), we may formalize the procedure by
defining:

Outer variables: Dimensionless independent and dependent variables
based upon the primary reference quantities in the problem.

Outer limit: The limit as the perturbation parameter ¢ tends to zero
with the outer variables fixed.

Outer expansion: The asymptotic expansion for ¢ — 0 with outer
variables fixed. Obtained in principle from the exact result by
successive application of the outer limit process in conjunction with
an appropriate outer asymptotic sequence.

Inner wvariables: Dimensionless independent and dependent variables
stretched by appropriate functions of ¢ so as to be of order unity
in the region of nonuniformity of the outer expansion.

Inner limit: The limit as ¢ — 0 with inner variables fixed.

Inner expansion: The asymptotic expansion for ¢ — 0 with inner
variables fixed. Obtained in principle from the exact result by
successive application of the inner limit process in conjunction
with an appropriate inner asymptotic sequence.

Composite expansion: Any scries that reduces to the outer expansion
when expanded asvmptotically for ¢ — 0 in outer variables, and to
the inner expansion in inner variables.

The technique of matching two complementary asymptotic expansions
reduces a singular perturbation problem to its simplest possible elements.
If the first inner problem is nevertheless found to be “impossible,” then
one may suppose that the problem itself is intractable. For example,
it is clear that extending the thin-airfoil theory of Chapter IV to subsonic
compressible flow leads, in the casc of a round-nosed airfoil, to the inner
problem of subsonic flow past a parabolic cylinder, for which no complete
solution is known. Again, viscous flow past a cusp-nosed airfoil at high
Revnolds number leads to the inner problem of viscous flow past a
semi-infinite flat plate, for which only partial solutions exist. An ad-
vantage of the technique is that even in these “impossible” situations
one can make use of numerical solutions or even of experimental
measurements for the inner solution. Thus in his lifting-line theory
Prandt]l advocates the use of experimental airfoil-section data for what
will be seen in Section 9.2 to be the inner solution.

5.5. Choice of Inner Variables

A crucial step in the method of matched asymptotic expansions is the
choice of inner variables. One faces the questions:
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(a) Which independent variables should be stretched ?
(b) How should they be stretched ?
(c) How should the dependent variables be stretched ?

Answering the first question depends upon recognizing the singular
nature of the problem, including the location of the nonuniformity and
its “‘shape”—that is, whether it is the neighborhood of a point, line, or
surface.

The degree of stretching required is usually evident when it is possible
to calculate several terms of the outer expansion. For example, the
formal thin-airfoil solution for an ellipse was seen in Section 4.4 to be
invalid within a distance of order ¢* from the leading edge, and the
inner coordinates were magnified accordingly. Physical insight may
suggest or confirm the proper stretching as the scale of the secondary
reference length in the problem.

Otherwise, the stretching can be sought by trial. 'The guiding principles
are that the inner problem shall have the least possible degeneracy, that
it must include in the first approximation any essential elements omitted
in the first outer solution, and that the inner and outer solutions shall
match. As an example, consider the model problem (5.1). Trving an
arbitrary stretching of the independent variable only, we set

flxye) = F(Xje), X — ) (5.11)

The problem becomes
a*F a(e) dFF a¥(e) Vo gy 5
FA Rl Sl F(O) -0, f’(;) =1 (5.12)

Because the highest derivative was lost in the outer limit, d2F d X must
now be preserved in the inner limit. This means that the factor o(e) ¢
multiplying dF d.\" must not become infinite as ¢ -— 0. If it vanishes, the
solution satisfying the inner boundary condition (which must also be
preserved) is simply a multiple of .X'; but this cannot be matched with
the outer solution (5.3). The remaining possibility is that o(e) e
approaches a constant; this also yields the least degenerate differential
equation. Taking the constant as unity without loss of generality gives
the previous results (5.4) and (5.5). It was unnecessary to stretch the
dependent variable in this example because the first inner problem is
homogeneous; but in general one must admit separate stretching of
each dependent as well as each independent variable.

The inner variables are almost always, as in the preceding examples,
formed by lincar stretching. An exception arises in the problem of the

5.5. Choice of Inner Variables 87

vortical layer on an inclined cone (Munson, 1964). This is illustrated by
the following model problem:

4

T =0, f(1)=1 (5.13)

S
X

ITterating or substituting a series in powers of ¢ yields the straightforward
(outer) perturbation solution:

&

f(V, 8) ~1 o Ti; (»\'17'“ = l) =+ 0(8)2, m = 1 (51421)
~ 1 - elogx -- O(?), m =1 (5.14b)
This is singular at &+ — 0 for m = | and at x — ¢ for m <C 1. It seems

likely that for m = | an appropriate inner coordinate is
N = ppmtn=D) (5.15)

and this i1s confirmed by examining either the resulting inner equation

A ;{Y —f=0 (5.16)
or the exact solution
£ B &‘Xl_m \ ‘
f(x; e) = exp(— = m) exp| p—— ), m 1 (5.17a)
= X m =1 (5.17b)

In the special case m — 1, (5.14b) indicates that the region of non-
uniformity near the origin is exponentially small: x == O(e1/*). One
might suppose that, just as for the sharp-nosed airfoil of Section 4.7,
an appropriate inner variable would therefore be given by the correspond-
ing linear stretching:

X = xel's (5.18)

However, this leaves the transformed differential equation

df
X ef =0 5.19
X of (5.19)
unchanged, so that simple stretching is ineffective. Instead, the exact
solution (5.17b) shows that the proper inner coordinate is given by the
nonlinear distortion

X o= (5.20)
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which transforms the differential equation to

x4

v /=0 (5.21)

'Thus it appears that a fractional-power transformation is required when
nonuniformity in an exponentially small region arises not from the
boundary conditions but from a homogeneous operator of the form
x ¢/¢x in the differential equation.

5.6. The Role of Matching

The method of matched asymptotic expansions involves loss of
boundary conditions. An outer expansion cannot be expected to satisfy
conditions that are imposed in the inner region; converscly, the inner
expansion will not in general satisfy distant conditions. Thus it is an
exceptional circumstance that the inner solution for the elliptic airfoil
(Section 4.10) happens to satisfy the upstream boundary condition;
the inner solution for a sharp edge does not (Section 4.11). Hence
insufficient boundary conditions are generally available for either the
outer or inner expansion. 'T'he missing conditions are supplied by
matching the two expansions.

For partial differential equations a useful preliminary to matching is
application of the principle of minimum singularity (Section 4.5).
Experience has shown that of the admissible solutions only the one that
is least singular in its region of nonuniformity can be matched to the
complementary expansion. For example, the inner solution for a round-
nosed thin airfoil was seen in Section 4.9 to be a symmetric flow past the
osculating parabola. Figure 5.3 shows the first two of an unlimited

A
i

Fig. 5.3. Alternative symmetric flows past parabola.

number of possibilities. All but the first give unbounded speeds at
infinity, and conscquently cannot be matched with the thin-airfoil
expansion (Exercise 4.2).

5.77. Matching Principles 89

Although the principle of minimum singularity often reduces the
number of possibilities, it cannot always single out a unique flow pattern.
For example, it rules out source eigensolutions in the linearized solution
for a round-nosed airfoil, but not in the second approximation. This is as
it should be, because a source eigensolution must actually occur in the
second-order outer solution for a smooth profile that differs from an
ellipse only in the vicinity of the leading and trailing edges (IFig. 5.4).

Matching is the crucial feature of the
method. The possibility of matching rests
on the existence of an overlap domain
where both the inner and outer expansions
are valid. By virtue of the overlap, one
can obtain exact relations between finite Fig. 5.4. Airfoil having samc
partial sums. This remarkable achieve- linearized solution as cllipse.
ment is possible only for a parameter
perturbation that is nonuniform in the coordinates, or for a coordinate
perturbation that is nonuniform in the other coordinates. One cannot
match two different parameter perturbations, such as expansions for
large and small values of Reynolds number or of Mach number.
Neither can one match two different coordinate expansions, such as
for small and large time or distance. Such series may overlap in the
sense that they have a common region of convergence, but the process
of analytical continuation vields only approximate relations from any
finite number of terms (cf. Section 10.9).

Matching may also be contrasted with what we shall call numerical
patching. This consists in joining two series by forcing their values and
perhaps several derivatives to agree at an arbitrary intermediate boundary.
Although the result mayv be of practical utility-—or even numerically
indistinguishable from that of matching—patching is esthetically
displeasing, and ordinarily no simpler. Also, matching is more systematic
than patching in higher approximations. Our view is that patching should
be avoided whenever it can be replaced by matching, which provides
an imperceptibly smooth blending of the two solutions.

5.7. Matching Principles

The existence of an overlap domain implies that the inner expansion
of the outer expansion should, to appropriate orders, agree with the
outer expansion of the inner expansion (Lagerstrom, 1957). This
general matching principle can be given various specific formulations.
The literature shows that the choice of matching principle is somewhat
a matter of the investigator’s taste.
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Note




See
Note

90 V. The Method of Matched Asymptotic Expansions

In matching his boundary-layer approximation to the outer inviscid
flow, Prandtl tacitly applied what we may call the limit matching principle:

The inner limit of (the outer limit) (5.22)

= the outer limit of (the inner limit).

Whether this primitive rule is correct, or adequate, depends not only
on the problem, but also on the choice of independent variables being
matched. It is evidently valid for the tangential velocity in the boundary
layer, which must for large values of its argument approach the inviscid
surface speed. However, it is invalid for the normal velocity or stream
function, where the first repeated limit in (5.22) is zero but the second
is infinite. The same difficulty arises in plane flow at low Revnolds
number (Chapter VIII).

We can improve this simple rule by describing more precisely the
limiting behavior of the quantity being matched (cf. Sections 3.2 and
3.3). Instead of mere limits we use asymptotic representations. This
gives the matching principle

Inner representation of (outer representation)

(5.23)

= outer representation of (inner representation).

Here the outer (or inner) representation means the first nongero term in
the asymptotic expansion in outer (or inner) variables. This rule provides
matching in cases where the limit principle (5.22) gives only a trivial
result. For example, we shall see in Section 8.7 that it suffices for plane
flow at low Reynolds number.

The principle is extended to higher approximations by retaining
further terms in the asymptotic expansions. We must permit the number
of terms to be different in the inner and outer expansions, because the
normal matching order (Section 5.9) requires a difference of one in the
even-numbered steps. Thus we obtain the asymptotic matching principle
introduced in Chapter IV:

The m-term inner expansion of (the n-term outer expansion)

(5.24)

= the n-term outer expansion of (the m-term inner expansion).
Here m and 7 are any two integers; in practice m is usually chosen as
either n or m — 1.

This matching principle appears to suffice for any problem to which
the method of matched asymptotic expansions can successfully be
applied. It will be used throughout this book. In the following section,
however, we describe an alternative principle that provides deeper
insight into the nature of the overlap domain.
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5.8. Intermediate Matching

In the outer limit process of thin-airfoil theory (Chapter I'V) a point
remains a fixed distance from the leading edge as the thickness ratio
tends to zero, whereas in the inner limit process for the elliptic airfoil
the distance decreases like ¢2 It 1s by
no means obvious that the two limit
processes can  be interchanged,
because there is a gap between the
inner and outer regions. That a gap
exists 1s clarified by considering a
point whose distance from the nose
decreases only like ¢ (Fig. 5.5). This
point ultimately emerges from any
vicinity of the leading edge, and is at
the same time excluded from the
region of validity of the outer solution. Q

To bridge this gap, Kaplun (1957)
has introduced the concept of a Fig. 5.5. Intermediate limit process
continuum of ntermediate [limits, for elliptic airfoil.
lying between the inner and outer
limits. Although he considers a very general class of limits, it will suffice
for purposes of illustration to consider only those associated with powers
of the small parameter. If s is the outer variable associated with a non-
uniformity at s == 0, we introduce an intermediate variable

§ :— ;0 < a<a (5.25)
Here x = 0 gives the outer and x = x; the inner limit; for example,
a; == 2 for the elliptic airfoil. The limit as ¢ — 0 with 3 fixed is called the
intermediate limit; and its repeated application in conjunction with an
appropriate asymptotic sequence yields the intermediate expansion.
Carrying out the intermediate limit in the differential equations and
boundary conditions yiclds the intermediate problem. Although we have
introduced very many limit processes, they lead to only a few different
problems. All intermediate limits yield essentially a single intermediate
problem, which is often the same as the inner problem. For example,
setting § = s ¢* and 7 = v ¢ in Eq. (4.33a) for the elliptic airfoil and
letting ¢ — 0 gives
J~ e r2g (5.26)

"I'hus the intermediate problem is that of symmetric flow past a parabola
of nose radius ¢27%
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The intermediate solution is the solution of the intermediate problem.
Its difference from the full solution must vanish uniformly in the
intermediate limit. "Thus for the elliptic airfoil the intermediate solution
for surface speed is, from (4.28),

g~ AT e (5.27)

The denominator cannot be expanded, because the result would not be
uniform near the stagnation point. This example illustrates that the
intermediate solution 1s not necessarily the intermediate limit of the
full solution—which is here simply {;-—but may have a more complex
structure.

Although the gap between inner and outer limits has been bridged
by the intermediate solution, it is not vet apparent that there exists an
overlap domain. This 1s assured by Kaplun’s extension theorem, which
asserts that the range of validity of the inner or outer limit extends at
least slightly into the intermediate range. We forego the proof of this
theorem, whose truth will be evident in specific examples. Thus we can
match the intermediate expansion with the outer expansion at one end
of the range and with the inner expansion at the other end. Often the
intermediate expansion is identical with the inner expansion—as in our
example of the elliptic airfoil - or is contained in it as a special case.
Then we can simply match the inner and outer expansions in the outer
overlap domain.

Matching requires that in the overlap domain the difference between
the outer (or inner) and intermediate solutions vanish in the intermediate
limit. Thus for the elliptic airfoil we match the intermediate solution
(5.27) to the outer uniform stream by considering

, . . S . . . by
M)l‘l}q;wd[L Uiy E‘i‘“.g_ei—_l} = lim [~ U, — O] (5.28)
This vanishes if {; —= U, and x <= 2. Hence the outer overlap domain

180 << x <2,
We may call the extension of this rule to higher approximations the
intermediate matching principle:

In some overlap domain the intermediate expansion of the
difference between the outer (or inner) expansion and the  (5.29)
intermediate expansion must vanish to the appropriate order.

For example, consider two terms cach of the intermediate and outer
expansions for the speed on an elliptic airfoil, where in the latter we
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admit the source eigensolution of (4.32a). The difference between the
two expansions 1s, in intermediate variables

o~
eCy

1) ~= L’,:l - & " 261\5: j?@] — LZ/\/ 7X—"—— (5-30)

and expanding gives

-2
D~Ul —¢) - U, — clc(izjf %

) - Ot &2 (5.31)
This vanishes to order e—that is, to second order in powers of e -if
U, —= U1 +-¢), C; =0, and 0 -~ « -~ . The first two of these
results were found by asymptotic matching in Chapter IV. The third
means that the outer overlap domain has shrunk to half its previous
width.

5.9. Matching Order

All our previous discussion suggests complete symmetry between the
inner and outer limits, so that the two terms could be interchanged
throughout. However, we have heretofore used “outer” always to denote
the straightforward or basic approxi-
mation, and we insist on adhering to
this convention. More precisely, we
assign the terms so that the outer
solution is, to first order, independent
of the inner. The test is to consider
a first-order change in each, and sce
whether the other is affected. For
example, in thin-airfoil theory the Nur;\fber
free stream is disturbed only slightly term
by doubling the nose radius, whereas
the flow near the nose is drastically
altered by doubling the free-stream

Outer inner
expansion expansion

°‘__°‘__’

speed.
In general, matching must proceed
step b} step as indicated b.V the Fig. 5.6. Matching order for inner

solid arrows in Fig. 5.6. The basic  and outer expansions.

solution dominates the inner solution,

which in turn exerts a secondary influence on the outer expansion, and
so on. This order is inviolable in the direct problem of boundary-layer
theory, for example.
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One can sometimes short-circuit the standard matching order. An
obvious case is an initial-value problem, where all the boundary
conditions are imposed in the outer region. Then one can calculate an
unlimited number of terms of the outer expansion, as indicated by
dotted arrows in Iig. 5.6, and subsequently match with the inner
expansion to complete the solution. This situation can arise in fluid
mechanics from inverse formulation of a problem, an example being
given 1n Section 9.9.

The same bypassing of the inner expansion occurs in a more subtle
case, when the nonuniformity is so weak that it does not affect the outer
flow. An example is the biconvex airfoil of Sections 4.7 and 4.11. For a
round-nosed airfoil, on the other hand, the example of Fig. 5.4 shows
that only two terms can be calculated before one must resort to matching
with the inner expansion.

When the standard order is followed, matching will indicate each
new term in the asymptotic sequence, which therefore need not be
guessed in advance. For example, rewriting any number of terms of the
thin-airfoil expansion (4.14b) for the ellipse in inner variables and
expanding for small ¢ shows at each stage that the next term in the inner
expansion is of the order of the next higher power of e. An example
where the asymptotic sequences are different for the inner and outer
expansions is discussed in Section 6.3.

5.10. Construction of Composite Expansions

Representing the solution of a singular perturbation problem by an
inner and an outer expansion may raise awkward practical questions of
where to shift from one to the other. A crude device would be to change
where the two curves cross, but the result would have spurious corners.
Moreover, for the elliptic airfoil, for example, the first-order inner and
outer solutions for surface speed do not meet (Fig. 5.7).

Fortunately, since the two expansions have a common region of
validity, it is casy to construct from them a single uniformly valid
expansion. The result is necessarily more complex than either of its
constituents, and is in fact a composite expansion in the sense of Section
5.4. The construction can in principle be carried out in a variety of ways.
The results may be different, because a composite expansion is not
unique; but they will all be equivalent to the order of accuracy retained.

Two essentially different methods have been used in practice. The
first may be called additive composition. The sum of the inner and outer
expansions is corrected by subtracting the part they have in common,
so that it is not counted twice. The common part can sometimes be
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found by inspection. Otherwise, it may be calculated as the inner ex-
pansion of the outer expansion, or vice versa. Thus, in an obvious

Inner

NS

Fig. 5.7. First-order inner and outer solutions for speed on thin cllipse.

notation, where f{"” means the m-term inner expansion, and so on, the
rule for additive composition is

f;m) :*fén) ,[fa(n)]f(m)
f(m.n) — (5.32)
¢ /f;’” +fi(m) _ [fl_(m]ém

One can verify this rule by taking the m-term inner and n-term outer
expansions of both sides. Using the asymptotic matching principle
(5.24) shows that the inner and outer expansions are reproduced in their
respective regions.

Working with differences, though conceptually somewhat different,
yields the same rule. The outer expansion is made uniformly valid by
adding to it the solution of the inner problem for the difference between
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the exact solution and its outer expansion, or the inner expansion is
corrected analogously. This may be written symbolically

sf(on) ,:F [f *f((/n)]ll.m)
tmyny - (5.33)
f” ’ foo — [f — fum)im

The asymptotic matching principle shows that these are equivalent to
the additive rule (5.32).

The second method may be called multiplicative composition. The
outer expansion is multiplied by a correction factor consisting of the
ratio of the inner expansion to its outer expansion, or the inner expansion
1s treated similarly. This gives

(§23] f(n)
i 0
ftcm.n) :fo(n) _J? ):f(im) e

[f_(m)](n [f(n)]('m)
f(in) ;m)
- [flm]om = [fom]m (5.34)

The first form is recognized as providing the multiplicative correction
factor that was applied to round-nosed airfoils in Section 4.8. The last
form exhibits the inherent symmetry between the inner and outer limit
processes.

The additive and multiplicative rules of composition are related by
the fact that the ratio of two quantities near unitv can be expanded into
a sum using the binomial theorem. The additive rule is usually simpler
to apply; the multiplicative one sometimes gives simpler results. Either
can be used even when the inner problem cannot be solved analytically,
the solution being known only from numerical computation or experi-
ment.

We 1illustrate these two methods for the surface speed on a thin elliptic
airfoil. From two terms of the outer expansion (4.13) and one term of
the inner expansion (4.46) we obtain as the uniform first-order perturba-
tion solution, by additive composition (5.32)

[¢ i 2s
e mrae (5.35)

and by multiplicative composition (5.34)

[
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Here s == 1 + & or 1 — & according as we correct the nonuniformity
at the leading or trailing edge; a truly uniform solution is obtained by
treating each edge in turn (Exercise 5.3). Other kinds of multiple
nonuniformity (cf. Section 9.13) can likewise be handled by repeated
application of the rules for composition.

A composite expansion has at least the accuracy of each of its constit-
uents. Thus (5.35) and (5.36) are in error by no more than O(e?) away
from the edge and O(¢) near the edge. In fact the additive result (5.35) is
evidently in error by precisely ¢ at the stagnation point. The multipli-
cative result (5.36) has the advantage of being exact there. Extending the
composite result by using two terms of the inner as well as the outer
expansion leads again to (5.36) for either addition or multiplication.
This means that by coincidence the error in (5.36) is actually no greater
than O(e*) everywhere. Iligure 5.7 shows the improvement resulting
from use of the composite expansion.

EXERCISES

5.1. Uniform approximation for Friedrichs’ model. TForm in two different ways
a composite expansion from the solution (5.6). Discuss the difference, and
compare with the exact solution. Consider higher approximations.

5.2. Uniform approximation for biconvex airfoil. Construct an approximation
for the surface speed on a thin biconvex airfoil in incompressible flow that is
uniformly valid to order ¢ except at the trailing edge.

5.3. Composite rules for tewo nonuniformities. Devise rules, analogous to (5.32)
and (5.34), for constructing composite expansions in the case of two separated
nonuniformities—as for a thin airfoil with stagnation leading and trailing edges.
Apply your results to the surface speed on an clliptic airfoil, and compare with
the exact solution.

5.4. Outer, middle, and inner expansions. Show that a perturbation solution of
the problem

d
X3 —d“‘:— = ¢[(1 + &)x —+ 22]y?, y)y=1—¢

for 0 << & < 1 requires three matched expansions. Calculate in succession two
terms of the straightforward (outer) expansion, two terms of the middle
expansion, and one term of the inner expansion. Choose new magnified variables
as suggested by the preceding expansion, and match at each step.
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5.5. Model with nonvanishing highest derivative. Calculate three terms of an
approximate solution in powers of ¢ for

(1 + o 5 = el(l — e)w® — (1= ey + 3% + 2097, (1) =

Deduce the location of any nonuniformity for 0 << x <C 1, and the size of the
region involved. Calculate the leading term in the inner expansion, finding the
constant by matching. Calculate the second term, and form a uniformly valid
second approximation.

5.6. Impulsive motion of light mass on spring. A small mass hangs from a
weightless spring with internal damping proportional to velocity. A vertical
impulse / is imparted to the mass by striking it with a hammer. Show that
appropriate choice of variables reduces the problem to

ey -y -~y =0, (0) = 0, ev(0) =1

Show how a straightforward approximation for small ¢ breaks down. Calculate
an inner expansion, and a composite approximation. Discuss the applicability
of the method when damping is absent, the canonical equation being ey — y = 0.

5.7. Circle in parabolic shear. Complete the solution of Exercise 2.4 to order ¢
by introducing a supplementary expansion valid far from the circle. Construct
a uniformly valid composite approximation.

Chapter VI

THE METHOD
OF STRAINED COORDINATES

6.1. Historical Introduction

In the late 1940’s Whitham and Lighthill were concerned at Man-
chester University with problems involving the locations of bow shock
waves in supersonic flow. Asan outgrowth of that work, Lighthill (1949a)
described a general technique for removing nonuniformities from
perturbation solutions of nonlinear problems. The method has sub-
sequently been applied to a variety of problems in fluid mechanics. Thus
it constitutes an important alternative to the method of matched
asymptotic expansions.

The basic idea of Lighthill's technique is that the linearized solution
may have the right form, but not quite at the right place. 'The remedy is
to slightly strain the coordinates, by expanding one of them as well as
the dependent variables in asymptotic series. The first approximation—
which becomes the same function of the strained variables as it was of the
unstrained ones—-is thereby rendered uniformly valid. One can proceed
similarly to higher approximations. The straining of coordinates is
initially unknown, and must be determined term-by-term as the solution
progresses.

The straining is determined by the principle already introduced in
Section 4.12:

Higher approximations shall be 6.1)
no more singular than the first. ’

This halts the disastrous compounding of singularities that invalidates a
straightforward perturbation expansion in a region of nonuniformity.
Lighthill notes that sometimes a weak increase in singularity can actually
be tolerated (Exercise 6.1), but it is simplest to adopt the above principle.

This principle does not by any means determine the straining uniquely;
but the nonuniqueness can often be used to advantage. Because both
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independent and dependent variables are expanded, the solution is
found in implicit form, with the strained coordinate appearing as a
parameter. This implicitness, far from being undesirable, is essential in
most problems. Often one requires only a uniform first approximation,
Then the second-order cquations need not be solved, but merely in-
spected to determine the straining.

An analogous straining of the independent variable was used by
Poincaré (1892) to obtain periodic solutions of nonlincar ordinary
differential equations. For this reason Tsien (1956), in a survey article,
has dubbed it the “PLLK method,” the K standing for an application to
viscous flows undertaken by Kuo (1953, 1956). We prefer to speak of
Lighthill’s technique, or of the method of strained coordinates, which
describes its essential feature.

The technique has proved altogether successful for treating hyperbolic
differential equations—particularly in problems with waves traveling
primarily in one direction, which is the sort of problem for which it was
invented. Lighthill himself (1949b) applied it immediately to conical
shock waves in steady supersonic flow. Whitham applied it to the pattern
of shock waves on an axisymmetric projectile in steady supersonic flight
(1952) and to the propagation of spherical shocks in stars (1953). Legras
(1951, 1953) treated supersonic airfoils, and Rao (1956) sonic booms.

An important generalization of the method has been advanced by
Lin (1954) for hyperbolic equations in two variables. The strained
coordinate of Lighthill may then be interpreted as one of the characteris-
tics. Lin adopts characteristic parameters as the basis for a perturbation
theory, which amounts to straining both families of characteristics. This
permits treatment of waves traveling in both directions.

Because of the flexibility of Lighthill's method, it represents a
philosophy of approach rather than a definite sct of rules. For this reason
it is difficult ever to say that the method has failed. Nevertheless, it
appears that the method is inappropriate for clliptic equations, despite
Lighthill’s (1951) treatment of round-nosed airfoils in incompressible
flow which we outlined in Section 4.12. Likewise, despite Kuo’s attempts,
the method appears to be unsuitable for parabolic equations, where it
has even led to erroneous results (Wu, 1956; Levey, 1959). Thus in a
later survey bearing the same title as his original paper, Lighthill (1961)
advises that his method be used only for hyperbolic partial differential
equations.

It is illuminating to compare the method of strained coordinates with
that of matched asymptotic expansions. It is a strength as well as a
weakness of the former that only one asymptotic expansion is used for
the dependent variables. I'he analysis is simpler as a result, and one
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avoids the possibility of encountering an “impossible’” nonlinear problem
for the first term of the inner expansion. On the other hand, the principle
used for determining the straining of coordinates is so crude in compar-
ison with the detailed description of the region of nonuniformity provided
by an inner expansion that it is scarcely surprising that Lighthill’s
technique is not universally sucessful.

6.2. A Model Ordinary Differential Equation

Because of our devotion to fluid mechanics, we have emphasized
application of the method of strained coordinates to partial diﬂ‘erent%al
equations. However, it is useful also for many ordinary diﬂerengal
equations. Indeed, Lighthill introduces his method by considering
equations of the form

(v e T g = (62)

and Wasow (1955) has proved convergence under mild restrictions on the
functions ¢ and 7 (with corrections by Lighthill, 1961). We make a simple
choice for these functions, and consider the model problem

R A N (VR (63)
A straightforward perturbation expansion in powers of the parameter

¢ vields the formal solution

X (1 -= (1 —3x) 2 (I = &)1 — a)(1 -= 3w) o

L+ 6.4
S~ x € 248 AL 6.4)

This is a familiar situation arising from a singular perturbation problem.
The series converges, but the radius of convergence vanishes as x
approaches zero; the expansion is not uniformly valid near x — 0. The
exact solution is

f:\/(;) N e N R (6.5)

and this is finite at x = 0. The full equation is singular along the line
x = — ¢f (Fig. 6.1), but linearization transfers the singularity to x = 0;
and in higher approximations it is spuriously intensified rather than being
corrected.

The method of strained coordinates permits the singularity in the
linearized solution to shift toward its true position by straining the
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coordinate x. We expand both & and f in powers of ¢ with coefficients
that are functions of a new auxiliary coordinate, say s. Since the straining
is slight, the leading term in the expansion for ¥ may be taken as s itself.

\  Linearized

Fig. 6.1. Integral curves for (6.3).

Thus we set
F(x58) ~ f1(s) + efos) + &¥s(s) + - (6.6a)
where

X~ s 4 exy(s) + e2xg(s) + - (6.6b)
Substituting into Eq. (6.3) and equating like powers of ¢ yields

(sf1) =1 (6.7a)
(o) = fi'(sx)" — wy — f) = [l — ) — 3% (6.7b)
and so on. The solution for f; that satisfies the boundary condition is
1
fils) = —j-s (6.8)
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Then the equation for f, becomes

o 1+ 2s xy(8) 77

WY = — [+ 2 6.9)
and the solution is 5
c 1 1+ 2s

i) = £ — 5 [ml9) + =57 (6.10)

However, this last solution is not required if we seek only a uniformly
valid first approximation. The straining x, can be found simply by
examining the equation for f, without solving it.

The straining is to be chosen in accord with the principle (6.1) that
f, shall be no more singular than f;. Evidently the simplest way of
accomplishing this is to annihilate the nonhomogeneous right-hand side
of the equation (6.9) for f,, setting

1 +— 2s xy(5)

252 $

= const (6.11)

although the constant could be replaced by any regular function of s.
It is characteristic of the method that a further choice of straining is
open. The most obvious choice, x, = -- (1 — 2s) 25, gives as a uniform
first approximation
flws &) ~—— + o (6.12a)
1+ 2s
2s

X ~§ —¢

N (6.12b)

In this simple problem it happens that the parameter s can be eliminated
to give the explicit first approximation

R 1+ x X

AR TA0h T, B S AT B
fie) ~ g (‘8) t2—— 1 (6.12¢)
Alternatively, it may be convenient to make the straining vanish at
x = 1, where the boundary condition is imposed. Then we choose

x, = (352 — 1 — 25) 2s, and the uniform first approximation is
flase) ~ 1{—5 (6.13)
: 1 —

X~s§ e 3—5———21?;§ (6.13b)

In this casc eliminating s shows that the first approximation is the exact
solution (6.5), so that the series (6.13) terminate.



104 VI. The Method of Strained Coordinates

At x = 0, where the formal expansion (6.4) diverges, the exact
solution (6.5) or (6.13) gives f(0; &) = (2'¢ + 4)!/2. The result (6.12)
from the first choice of straining gives instead f(0;¢) ~ (26 + 1)1/2
which agrees with the exact solution to first order in e.

6.3. Comparison with Method of Matched Expansions

It is natural to inquire as to the relative applicability and merits of the
method of strained coordinates and the method of matched asymptotic
expansions. We therefore seck in this example an inner expansion to
supplement the straightforward outer expansion (6.4) in its region of
nonuniformity.

The outer expansion fails when x? is as small as ¢, because then suc-
cessive terms do not decrease in magnitude as was assumed. This
indicates that the region of nonuniformity is where x = O(e!/2). There
the outer expansion suggests that f is of order ¢ /2. We therefore
introduce inner variables X and F, which are of order unity in the region
of nonuniformity, by setting

7wy =Sl (6.14)

Rewritten in inner variables, Eq. (6.3) becomes

(X — F) % L F =an (6.15)

As suggested by the term ¢'/2, this is a case where the asymptotic
sequences are essentially different for the inner and outer expansions.
Whereas the outer expansion (6.4) proceeds in integral powers of e,
the inner expansion proceeds by half powers, having the form

f(x;8) ~ & VHFYX) — e2Fy(X) + eFa(X) + -] (6.16)
By substituting into the differential equation (6.15) we obtain
(X + F)F, +F, =0 (6.17a)

(X — E)F, — (1 + F)E =1 (6.17b)

and so on. The general solution for F, is

Fy(X) = vVX* 420, — X (6.18)
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It is clear that the boundary condition is an outer one, which should
be disregarded and replaced by matching with the outer expansion.
We apply the asymptotic matching principle (5.24) with m = n = 1.
Following the format introduced in Chapter IV, we have

. 1+«
L-term outer expansion: f~ — (6.19a)
1
rewritten in inner variables: =1+ Gy (6.19b)
. | .
expanded for small e: = TRy T 1 (6.19¢)
1 1
inner expansion: = = - 6.19d
I-term inner expansion: Y T b ( )

f~ e WET 26— X] (6200

L-term inner expansion:

xy o €

rewritten in outer variables: = % [V‘/l — 20 = 1] (6.20b)
C

expanded for small e: = Tl e (6.20¢)
C

l-term outer expansion: = \—1 (6.204d)

By equating (6.19d) and (6.20d), we obtain C'; = I. Hence thf: first-order
solution by the method of matched asymptotic expansions 1is

- as >0 with x fixed (6.212)

RY

fv;e) ~ ? T

NEE

as &0 with —pfied  (621b)

™| =

A uniformly valid composite approximation can be constructed by
either of the methods described in Section 5.10, which give

/

,f” ('i‘f L2 vy additive (6.21c)
YV Ve £ e ’
flwse) ~ | .
X2 - :
(1 =+ x) [,\“,f‘ (%) 4 % — %], multiplicative (6.21d)

Further terms in the inner expansion can be found by continuing the
process.
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It appears that in this example the method of strained coordinates is
by far the simpler of the two. We defer more detailed comparison to
Section 6.8.

6.4. Nonuniformity in Supersonic Airfoil Theory

A simple flow problem in which the method of strained coordinates
proves efficacious is that of supersonic flow past a thin airfoil. The classical
linearized solution of Ackeret is based upon the approximate equation

Py — By, =0,  B*=M* 1 (6.22)

Here ¢ is the perturbation velocity potential; we take it to be normalized
such that the velocity vector is @ = U grad(x -+ ¢). Although Ackeret’s
solution is a proper first approximation at and near the surface, it fails
at great distances from the airfoil. It predicts disturbances propagating
undiminished along the free-stream Mach lines to infinity (Fig. 6.2),
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Fig. 6.2. Flow pattern above supersonic airfoil. (a) Linearized. (b) Nonlinear.

whereas in reality the Mach lines are not straight or parallel, and shock
waves are formed and decay.

This nonuniformity at large distances is somewhat more delicate
than that arising, for example, in Stokes’ approximation for viscous
flow at low Reynolds numbers (Chapter VIIT). There one can use the
first approximation to estimate the magnitude of the terms neglected in
the equation of motion, showing that they ultimately dominate those
retained. However, in the present problem the nonlinear terms are
actually small everywhere compared with the linear ones; it is only their
contribution that becomes dominant. They have what Hayes (1954) calls
a cumulative effect, meaning that over a long stretch their influence grows
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to first order. To see this it is necessary to actually calculate the second
approximation. 'T'his means solving the nonlinear potential equation
(2.19) by successive approximations, starting with Ackeret’s linear
solution. Setting ¢ — x — ¢ in (2.19) and grouping linear terms on the
left-hand side puts it into the appropriate form:

5 9 7 1 2 2
Pyy B-(wa = M? [sz‘ (2991 - (sz o ¢y-)((pxx + (Pz/y)

o (2(73‘:: - Qvfg)(Pm' i 2(1 -t ‘PJ‘)(py(Pfy 1 (Pyztpz/y:l (623)

Let the upper surface of the airfoil be described as before (Fig. 4.1)
by y = & T(x). Then the formal second approximation for the streamwise
velocity component above the airfoil is found, by iterating upon (6.23),
to be (Van Dyke, 1952)

u T'(¢ o 1 1 My,
Ft ey gl - e
Y ;—1 ;1;4 yT' (T (¢) — T(§)T”(§)] + O(e?) (6.24)

where ¢ = x — By. At the surface this reproduces the well-known,
second-order solution of Busemann. Far from the airfoil however, the
second term is not small compared with the first—as was assumed in
the iteration process—because it grows linearly with v along any free-
stream Mach line x — By = constant. Evidently the expansion is invalid
in the distant region where y = O(&71).

The troublesome term in v is proportional to (y — 1). This is an
indication of the fact that the nonuniformity arises only from the
“pseudo-transonic” term (y - 1)M*p ¢, that is inherent in the non-
linear right-hand side of the differential equation (6.23). That term can
be exhibited explicitly by transforming to the oblique coordinates
introduced later (see also Hayes, 1954). The contribution of all other
nonlinear terms is uniformly of second order. Although the pseudo-
transonic term is small, it has a first-order cumulative effect. It must
therefore be retained in addition to the linear terms in seeking a uniformly
valid first approximation. To that order the tangency condition may be
imposed on the axis, as discussed in Sections 3.8 and 4.2. Thus the
problem for the first approximation is

®yy — Biope = (v + DM@, (6.25a)
plx, 0) = eT'(x) (6.25b)
p(x,y) =0 upstream (6.25¢)
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It is convenient to make a preliminary transformation of coordinates.
There are two distinguished directions in the problem: that of the free
strcam, and that of the outgoing free-stream Mach lines either above or
below the airfoil (Iig. 6.3). The airfoil lies nearly along the first, and the

Fig. 6.3. Wave patterns in supersonic flow.

wave pattern nearly along the second. The other family of Mach lines
plays only a secondary role. This is true if we restrict consideration to,
say, the upper surface of a single airfoil; for multiple bodies both families
of Mach waves are of primary importance, and intersect, forming a
Scotch-plaid pattern. For this reason the second-order solution (6.24)
can be expressed more naturally in terms of the normalized distances

£ =x— By (6.26a)
n = By (6.26b)

perpendicular to the two distinguished directions. We therefore adopt
henceforth, following Hayes (1954), these “semicharacteristic” coordi-
nates. If both families of waves were present, one would use instead the
characteristic coordinates ¥ — By and x - By, and in the next section
Lighthill’s technique would have to be replaced by the generalization
of Lin (1954) mentioned previously.

Rewritten in these oblique coordinates, the problem (6.25) becomes

—1 M
Py %7 F PePss = gj‘?nr] (6.273)
7‘/
P: = — & —z;*) P, at 7 =0 (6.27b)
p==0 upstream (6.27¢)
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The linearized solution is ¢ = — ¢T(£) B, so that ¢, = ¢, — 0.
Although this is not true in the nonlinear solution, because the waves
depart slightly from the free-stream Mach lines, Hayes points out that
the terms ¢, and ¢,, appearing here represent truly second-order effects,
like others already neglected. Hence they may be discarded, and the
problem for a uniform first approximation becomes simply

y 1 an

Po 5 T P = 0 (6.28a)
T

P(€,0) = — ¢ 1(;1 (6.28b)

p =20 upstream (6.28¢)

We are now in the fortunate position of having a well-posed problem
for the dimensionless streamwise velocity perturbation #’, given by
, Au
W= g = (6.29)
We prefer to work with this, because it has more physical significance
than the velocity potential ¢. Thus the problem to be solved becomes
finally, with the prime deleted henceforth from i/,

y 1A
W, T s g i = 0 (6.30a)
W(E 0) — — e L8 (6.30b)
B
u=0 upstream (6.30¢)

6.5. First Approximation by Strained Coordinates

We apply to this problem the method of strained coordinates. It is
clear physically (cf. Fig. 6.2) as well as mathematically that the coordinate
¢ describing the Mach lines is to be strained. We therefore introduce a
slightly strained variable s in place of £, and set

u(é,m; &) ~ euy(s, 1) — e2uy(s, 1) + - (6.31a)
E~s tebs, ) — =, np =t (6.31b)

The transformation of derivatives is found from

S LA
E:(l - &by )E?v 57*(6§sz )6§ +67] (6.32a)
¢ é e e e
g (Lmeba ) o= — (b ) (632b)
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By substituting the expansions (6.31) into the problem (6.30) for « and
equating like powers of ¢, we find

TG

uy, =0, (s, 0) = B u, =0 upstream (6.33a)
and
' 1 M+
Uy — (§2t - z —21' B2 ul)uls (6.33b)

Clearly u, is the same function of the strained variable s that it was
in linearized theory of the unstrained variable ¢:

(s, ) = — T;s) (6.34)

The straining function &, is now to be chosen according to the principle
(6.1) that u, be no more singular than u; as By = » == ¢ becomes infinite.
The simplest way of assuring this is again to annihilate the right-hand
side of the equation (6.33b) for u, by setting

1 M y -1 M+,
£,y = ”—2_ = e T (6.35)
so that
1 MY
s, 1) = f0) — 5 T (6.36)

For the present it suffices to make the straining vanish at the axis
v = 0 by taking the arbitrary function f(s) = 0. It is easily seen from
continuity that to first order the vertical velocity is also the same function
of s that it was of € in linearized theory. Hence, with the original Cartesian
coordinates restored, a uniformly valid first approximation for the two
velocity components 1s given by
du T'(s) , v

/£7~4‘£ B —_ v i—ﬁ’\/ET(S) E (6.37&)

where the parametric variable s is given implicitly by

Y/ ES
¥ — By ~s — ”—;1 —g— ey T'(s) — - (6.37D)

This solution has a simple physical interpretation. The lines s —
constant are actually the revised Mach lines, calculated using the first-
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order velocities. Tor it can be shown (Van Dyke, 1952) that the slope
of the outgoing family of characteristics is

dy 1 y 1 M du
Ry L Tl A (6:3%)
and inverting and integrating gives
Y. M3
x — By = y b1 M ﬂy -+ const (6.39)

2 B U

which corresponds to (6.37b), the constant being s.

Thus the solution obtained by straining coordinates gives velocity
components that are constant along the revised Mach lines, and have
the values given by linearized theory on the airfoil. This is in contrast
to linearized theory, according to which the velocity at any point equals
that at the foot of the free-stream Mach line passing through it (Fig.
6.4). Formal second-order theory (6.24) attempts to improve the estimate

Revised
characteristic ~y "

/\ Free -stream
characteristic

/
/

Fig. 6.4. Revision of Mach lines.

by relating values at the foot of the revised Mach line to those at the foot
of the free-stream Mach line by Taylor series expansion; of course this
breaks down as y — . The uniformly valid first approximation obtained
by straining coordinates is thus seen to consist of a simple wave (Prandtl-
Meyer expansion fan), and may be compared with the solution obtained
on that basis by I'riedrichs (1948).

Whitham (1952) has taken the above physical interpretation as the
basis for a more heuristic derivation of the uniform first approximation.
He introduces “‘the fundamental hypothesis that linearized theory gives
a valid first approximation to the flow everywhere provided that in it the
approximate characteristics are replaced by the exact ones, or at least
by a sufficiently good approximation to the exact ones.” The revision
(6.39) gives in fact a sufficiently good approximation to the characteristics,
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and then Whitham’s hypothesis leads at once to the solution (6.37) that
we have derived more formally by the method of strained coordinates.
Whitham is more concerned with applying his method to bodies of
revolution; and his result is the basis for calculating sonic booms.

The implicit nature of the straining is evidently essential to the uniform
validity of the solution. In sufficiently simple cases, however, the
dependence can be inverted to give an explicit solution. For example,

consider the smooth convex wall shown in Fig. 6.5, with T(x) = — Ja®
for x > 0. Equation (6.37b) becomes
y 1 M
x — By = 3(1 tet— _y) (6.40a)
%
[:J—\> i ye - Lyt
W x
Fig. 6.5. Simple smooth convex wall.
which can be inverted to give
x -— By
¢ — . b
s 1 y 1 AT (6.40Db)
R T T
Then (6.37a) gives the velocity components at any point
Au v x — By
= - e s 6.41
B o o es el ')"Fli[i ( )
R IY:E

In this example one sees clearly the source of the nonuniformity in the
formal thin-airfoil expansion. For any given y the solution can be ex-
panded in powers of ¢, but the result is not uniformly valid near y = 0.

6.6. Modifications for Corners and Shock Waves

It may happen that removal of a glaring nonuniformity from a pertur-
bation problem brings to light additional difficulties, which must be
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treated in their turn to obtain a truly uniform solution. This is the case
in the present problem if the airfoil involves corners or shock waves.
Although these details are not essential to our main exposition, we
digress for the sake of completeness to indicate the additional modifica-
tions that are required.

The preceding result is uniformly valid for a convex wall whose
slope is continuous and slowly changing (7 of order unity). However,
it is clear physically (I'ig. 6.6) that the result is invalid even on the surface

N
£
$

|
r

b — X

Fig. 6.6. Region of invalidity behind corner.

for a distance of order ¢ downstream of a corner, unless the corner lies
on the axis y = 0, because the solution singles out the surface slope
ahead of rather than behind the corner. The same is true of any region
where the curvature is so great (1" of order =) that the slope changes
by an appreciable fraction of its total variation over a distance of the
order of the thickness of the airfoil.

‘T'his difficulty arises from having imposed the tangency condition on
the axis rather than precisely on the surface, and correspondingly having
made the straining vanish on the axis. It can be remedied simply by
choosing the function of integration f(s) in (6.36) such that the straining
vanishes precisely at the surface, so that s = x on the airfoil. This gives

y— 1w

f8) = F0= 5 eTWOT'(s) — BT(s) (6.42)

Thus a solution that is uniformly valid on the surface even with rapid
changes in curvature, or corners, is given by (6.37a) with (6.37b) replaced

—eT(W)eT' () (6.43)

This is equivalent to the result of Egs. (92) and (93) of Whitham (1952),
though somewhat simpler.
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The solution is now uniformly valid for any smooth convex wall,
though shock waves have yet to be inserted for a concave wall. This is
true no matter how rapidly the curvature changes. However, in the limit
as the curvature becomes discontinuous (Fig. 6.7), tracing characteristics

Fig. 6.7. Corner as limit of smooth wall.

shows that the solution is undefined in the Prandtl-Meyer fan from the
corner. For example, taking 7T(x) = — «xH(x), where H is the Heaviside
unit step function, gives the convex corner shown in Fig. 6.7. Substituting
into (6.37b) or (6.43) and solving for s gives, to first order in e

sx—By for x — By <0

. oyl M . ) _y—1 M
(.\ By 5 & tor x — By > T TR

(6.44)

s

&y

However, s is undefined for 0 <= x — By < [(y + 1) 2](M* B®) ey,

Fig. 6.8. Smoothing of convex corner.
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This difficulty is easily remedied by temporarily smoothing the corner
slightly, so that the revised characteristic through every point again
strikes the surface at a point with a definite slope, as indicated in Fig.
6.8. Clearly s is approximately v, everywhere in the fan, if the corner
lies at (v, v,). Hence 7'(s) is constant in the fan with value 7(x,), whereas
7" varies from T'(x,—) to T7(x, *-). The value of 7" associated with any
point (x, y) in the fan is found from (6.43), which gives

1 M
x — By =x, — By, — Li*l BI.Z ey —y) T (6.45)
so that
, x — By) -— (v, — By,
T "(y;l})IP( Ve) (6.46)

Then substituting into (6.37a) gives the velocity components in the fan
as
Adu 4 (v — By) — (v, — By,)

B T? == - T ==& ‘ar,ﬁliﬁﬂ\l 4444 (6.47)

This holds only in the fan, where the value of (6.46) lies between
T'(x-) and T'(x.-).

Finally, if the wall is concave the revised characteristics converge, and
thev overlap at sufficiently great distances-—immediately for a concave
corner—so that the solution is not unique. For example, changing the
sign of the deflection in Fig. 6.7 leads to two values of s at cach point in
the fan. This multivaluedness must be eliminated by introducing a
shock wave to cut off the Mach lines before they can overlap (Fig. 6.9).
The shock wave is inserted according to the well-known principle that to

Shock
wave

Fig. 6.9. Trcatment of overlapping characteristics.
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first order a shock wave bisects the Mach directions ahead and behind.
Whitham (1952) gives an ingenious graphical construction of the shock
pattern for axisymmetric flow based on this principle, which can be
adapted to plane flow,

Fig. 6.10. Shock pattern for double-wedge airfoil.

For simple shapes the resulting form of the shock waves can be reasoned
out. For example, for a double-wedge profile the bow and stern shock
waves must, beyond their straight sections, be portions of a parabola
with the corner as focus and a free-stream Mach line as axis, in view of
the focussing property of a parabolic mirror (Fig. 6.10). More generally,
at such remote distances that the airfoil appears simply as a point, this

is true for any profile. Hence the shock pattern grows asymptotically
in width like y'/2,

6.7. First Approximation by Matched Expansions
It is of interest again to solve the problem (6.30) by the alternative

method of matched asymptotic expansions. Substituting the assumed
series

w (€ m;8) ~eu(§n) + uylé, m) + - (6.48)
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leads without difficulty to the straightforward expansion

() Lyl Mo
U~ B ‘j”BTﬁj T + (6.49)

This is an approximate form of the full second-order result (6.24). In
accord with our convention, discussed in Section 5.9, we call this the
outer expansion even though its region of nonuniformity is the vicinity
of the point at infinity.

The outer expansion is invalid where = O(¢71), and in that region
u is of order . This suggests introducing inner variables such that the
inner expansion is

w(é, me) ~ eUs(E, ) + Uy, H) + +,  H=sen  (6.50)

Substituting into the differential equation (6.30a) gives for the first

approximation
P eu, y 1 A
¢H ' 2 B

v, Cél —0 (6.51)

'This is a nonlinear partial differential equation. However, it happens
that it can be linearized by interchanging the roles of theindependent
and dependent variables, and secking a solution for §(U,, H). The
equation becomes

ey
i T O (6.52)
and its gencral solution is
. . Y Tl .1[4 .
Uy, H) =g(Uy) + S B U.H (6.53a)
The function of integration g is found by matching with the outer solution
(6.49). It is clear, despite the implicit form of the inner solution, that

this gives
' ¢(Uy) — 1"X(—BU,) (6.53b)

where 771 is the function inverse to 7’. For example, in the case shown
in Fig. 6.5 we have T'(x) == —x, so that 7""Y(—BU,) = BU,, and then
solving (6.53a) for U, yields the result (6.41) obtained previously by the
method of strained coordinates.

This inner solution is uniformly valid, because the inner equation
(6.51) is in fact the full equation (6.30a). In this simple example no
simplification is introduced by the inner expansion, which accordingly
terminates at one term.
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6.8. Utility of the Method of Strained Coordinates

The particular merits of the method of strained coordinates are
emphasized by contrasting it with the alternative method of matched
asymptotic expansions. It appears that, as in the foregoing two examples,
the latter method is applicable whenever the former is. The converse is
unfortunately not true. Thus the method of matched expansions is the
more reliable and perhaps the more fundamental of the two.

However, mn cases where the method of strained coordinates applies,
it is often strikingly simple. T'his is well illustrated by the preceding
examples, which demonstrate two advantages of Lighthill’s technique:
(1) It requires solving only the straightforward (outer) perturbation

equations, which are linear.

(i1) Tt gives directly a single uniformly valid expansion.

The second of these is less important, because we have seen in Chapter V
that an inner and an outer expansion can easily be combined in several
ways to form a single uniformly valid composite expansion. On the other
hand, the first is often a substantial advantage, because in nonlinear
problems the equation for the leading term of the inner expansion mav
be difficult or even impossible to solve. Thus in both our examples the
first inner problem is nonlinear, whereas the method of strained coordi-
nates involves only linear equations. It is the glory of Lighthill’s tech-
nique that it attains its goal while avoiding any detailed examination of
the region of nonuniformity.

For the same reason, however, it is not alwayvs successful. What is
worse, it may appear to succeed while giving an incorrect result. The
crucial question is, therefore, when is it safe to apply the method of
strained coordinates ? At present, no general rules can be set forth,
but only some indications.

One definite rule is that it is useless to strain the coordinates in a
perturbation problem that is singular because the highest derivative is
multiplied by a small parameter. 'I'hus Lighthill’s technique cannot be
used to treat Prandtl’s boundary laver. Attempting to do so usually leads
to a null result, as can be scen by considering the model problem of
Section 5.2. Under special circumstances, however, it leads to a definite
but erroneous result. This situation has been analyzed by Levey (1959),
who provides a mathematical model tllustrating the essential difficulty.

The method of strained coordinates succeeds when the singularity
predicted by the straightforward first approximation actually exists, but
at a slightly different location. It fails when the actual singularity is of a
different type, or nonexistent. The former situation appears to arisc with
hyperbolic equations, the latter usually with elliptic ones. An example
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arising from an elliptic equation is the logarithmic singula.ritz-' of.incom—
pressible thin-airfoil theory at a sharp edge. This was scen in bect'loy 4.1 14
to correspond in reality to a small fractional power. chcg straining of
coordinates fails, whereas the method of matched asymptotic expansions
was successtul. .

The round-nosed airfoil in incompressible flow is an exception,
because the square-root singularity of thin-airfoil theory exists, being
merely shifted from the leading edge to approximately the focus of the
oscula'ting parabola (Section 4.12). IFor this reason Lighthill (1951) was
able to use his technique to find a uniform second approximation for
round-nosed airfoils. I'bat this is an exceptional casc, however, is indi-
cated by the fact that all attempts have failed to extend his solution to
higher order, to subsonic compressible flow, or to other nose shapes.
All these problems have been successfully treated by the method of
matched asymptotic expansions (Van Dyke, 1954).

This situation has forced Lighthill (1961) to recommend that his
technique be restricted to hvperbolic partial differential equations. This
is an unfortunate limitation on a powerful method. It is to be hoped that
further study will not only clarify the conditions under which the existing
method of strained coordinates applies, but also disclose a refinement
that can be applied with confidence to other problems, particularly
those involving elliptic and parabolic partial differential equations.

EXERCISES

6.1. Ieaker straining principle. Show that a uniformly valid solution of the
problem (6.3) on page 101 is obtained by the method of strained coordinates

if the straining principle (6.1) is relaxed to require only that the second
approximation shall be no more singular than the square of the first.

6.2. A problem of Carrier (1954). Apply the method of strained coordinates
to the problem

wren L y—o =

showing that a uniformly valid first approximation has the form

f~aet’s, x~s—¢ec (14 ds+ gs*)es

with appropriate values of the constantsa,b, ¢, d g. Calculate the value of f(0).

6.3. Delayed straining. Show that in application of the method of strained
coordinates to the problem

a2 4 = &f¥,

dx Ay =1

See

Note

See

Note
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the first straining is determined only by the third-order problem. Compare
the solution with that obtained by the method of matched asymptotic expansions.

6.4. Pritulo’s method. Pritulo (1962) points out that if one has calculated a
straightforward perturbation solution and found it to be nonuniform, the
straining of coordinates required to render it uniformly valid can be found
directly therefrom by solving only algebraic rather than differential equations.
Hlustrate this by substituting (6.6b) into (6.4) and determining the straining
to order 2.

6.5. Cylindrical wave propagation. Consider the nonlinear model problem

cv

a
Q

' ¢
Lo — O’

v
cy 'y éx

o(x, 1) = ef(x)

Find the region of nonuniformity of the straightforward expansion for small
e and y > 1. Show that the method of strained coordinates produces the exact
solution.

Chapter VII

VISCOUS FLOW
AT HIGH REYNOLDS NUMBER

7.1. Introduction

We turn now to the prototype of singular perturbation problems, that
of viscous flow past a body at high Reynolds number. Prandtl’s boundary-
layer theory was invented to treat this problem. It was realized for some
time thereafter that boundary-layer theory provides the leading term in
an asymptotic expansion for high Reynolds number. However, attempts
to calculate further terms in the expansion led at first to considerable
confusion, controversy, and error. The problem became straightforward
with systematic application of the method of matched asymptotic
expansions. Here, using that method, we show how Prandtl’s theory
can be embedded as the first step in a scheme of successive approxima-
tions. 'The practical utility of such refinement is suggested by an estimate
of Lagerstrom and Cole (1955) that the second approximation may
predict the skin friction accurately down to Reynolds numbers of 10 or
even 5.

For simplicity we consider only plane steady laminar flow of an
incompressible fluid past a solid body in a uniform parallel stream. To
commence the analysis we need the basic solution for infinite Reynolds
number. Of course the actual flow becomes unsteady and turbulent
above a certain Reynolds number, but that is irrelevant because our
objective is an approximation for moderate values. Unfortunately, the
proper limiting solution is unknown for finite bodies, where flow separa-
tion presumably occurs. For example, Fig. 7.1 shows three conjectures
as to the relevant solution of the inviscid (Euler) equations for a circle,
and there are many other possibilities. Until this important question is
settled, it is impossible to treat flows with separation, because the wake
would exert a first-order influence even in the flow upstream. This
means that the body must be semi-infinite, with the exception of the
finite flat plate and perhaps some very thin airfoils. For further discussion
of these matters see Goldstein (1960).
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(a) (b) (c)

Fig. 7.1. Inviscid flow past circle. (a) Continuous potential flow. (b) Infinite dead-
water region. (c) Finite cusped wake (Batchelor 1956).

Serious difhculties arise from corners and other discontinuities, so
that it would be preferable to restrict attention to analytic bodies. On
the other hand, Prandtl’s equations are readily solved only for certain
self-similar flows, most of which correspond to shzlrp—noséd bodies. In
the face of this dilemma, we choose to accept the difficulties arising from
sharp edges for the sake of reducing the partial differential equations to
ordinary ones. We shall in fact make specific application to the finite or
semi-infinite flat plate, while indicating the modifications that arise for
other shapes.

The reader is assumed to be familiar with the elements of classical
boundaryv-laver theorv—in particular, with the Prandtl-Blasius solution
for the flat plate as given, for example, by Prandtl (1935), Goldstein
(1938), or Rosenhead (1963).

7.2. Alternative Interpretations of Flat-Plate Solution

The Blasius solution for the flat plate plays a variety of roles in
boundary-layer theory. We describe here three essentially different
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Fig. 7.2. Bodies with Blasius solution valid far downstream.
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interpretations. First, it applies to a semi-infinite flat plate. It then
represents a coordinate perturbation for large . More precisely, since
the problem contains only the viscous length v U, it represents the
asymptotic solution for large values of the running Reynolds number
v v. In this sensc it applies also to a round-nosed thick plate, or even
to such a growing shape as the parabola (Fig. 7.2).

Sccond, the Blasius solution applies to a cusp-nosed plate (Fig.7.3).

—> x

Fig. 7.3. Body with Blasius solution valid near leading edge.

In this case, oddlv enough, it represents a coordinate perturbation for
small x. More precisely, it is the asymptotic solution for small x L,
where L is a characteristic length such as the initial radius of curvature
of the profile. ‘The approximation could be improved by calculating
additional terms in a series in powers of x L. To be sure, the result is
not valid in the immediate vicinity of the leading edge, where x = O(v [).
"Thus we encounter a situation that arises occasionally in other branches
of fluid mechanics-—for example, for power-law bodies in hypersonic
small-disturbance theory (Haves and Probstein, 1959, Section 2.6)—
where a coordinate perturbation is valid for small (or large) distances,
but not too small (or large). One might suppose that the nonuniformity
at the leading edge could be removed by constructing a third expansion
for that region. However, the limiting problem is evidently just that of
the semi-infinite plate itself. Of course the flow very near the edge 1s
given by the approximation of Carrier and Lin described in Section 3.9.
However, that is not an inner solution in the sense of Chapter V;
it has no overlap with the Blasius solution and so cannot be matched
with it (Section 10.9).

Third, Blasius’ solution applies over a finite flat plate (Fig. 7.4). It
then represents a parameter perturbation, being the asymptotic solution
for large Reynolds number UL v based on plate length. This situation
arises only because the basic inviscid solution is the same for a finite and
a semi-infinite plate, and because the equations are parabolic, so that
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the boundary layer on the plate is not affected by the wake downstream
of the trailing edge. Of course the result is not uniformly valid, but
breaks down at both edges. 'The nonuniformity at the lcading edge has
just been discussed; that at the trailing edge is probably even more
complicated.

b
-
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Fig. 7.4. Notation for finite flat plate.

The distinction between these three interpretations of the Blasius
solution appears in higher approximations. We consider concurrently
the first and third viewpoints, for the finite and semi-infinite flat plate
For the second, see Van Dvke (1962b).

7.3. Outer Expansion for Flat Plate; Basic Inviscid Flow

Let L be the length of the finite plate, or an arbitrary reference length
for the semi-infinite plate (say the distance from the leading edge to a
red line painted on the plate!). The solution must actually be independent
of L in the latter case, and will be so to first order in the former.

It is convenient to introduce dimensionless variables by referring all
lengths to L and velocities to U'. This is equivalent to choosmg units
such that L = U" = 1 (Fig. 7.4). Then in Cartesian coordinates the
Navier-Stokes equations are equivalent to Eq. (2.24) for the dimension-
less stream function ¢, with v replaced by the inverse of the Reynolds
number R based on the length L:

r- YL (7.1)
14
Adding the boundary conditions of zero velocity on the plate and a
uniform oncoming stream gives as the full problem

’ ¢ 4 1 2\ 02/
(o 5y — ¥ 5 R )V =0 (7.22)

P(x,0) =0 (7.2b)
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$(5,0) =0  for 0« x 51, finite plate

" loo, semi-infinite

H(x,¥) ~y  upstream (7.2d)

(7.2¢)

We seek an asymptotic solution of this problem as the Reynolds
number R becomes infinite. Because the perturbation parameter appears
in the problem only as 1 'R, one might be tempted to assume that the
appropriate asymptotic sequence consists of powers of 1, R. However,
Prandtl’s theory shows that this is incorrect. We therefore adopt the
safer course of leaving the sequence unspecified, and assume a straight-
forward (outer) expansion in the form

P, v5 R) ~ 31 (R)n(x, ¥) - So(R)(x, y) + -
as R— oo with %,y > 0 fixed (7.3)

By substituting into the full problem and taking the limit as R — oo,
we obtain for the upstream condition (7.2d)

1
0 y) ~ lim [~ |y : 7.4
i, y) ~ him [ 5.0R) ]} upstream (7.4)
The limit appearing here may be zero, infinite, or finite. If it is zero,
the problem is homogeneous and the solution (if unique) is z//! - 0. If
the limit is infinite, the problem is meaningless. Hence a 51gm.ﬁcant
result is obtained only if the limit is finite. Without loss of generality we

take
8,(R) =1 (7.5)

The equation for the first approximation then becomes that for
inviscid flow:

Sl

(¢’1v — P1e z )V by =0 (7.6a)

according to which vorticity is simply convected, its viscous diﬁusiqn
being negligible to this approximation. A first integral was given in
Section 2.1 as

Vz‘/’l = ’w1(‘/’1) (7‘6b)

That is, the vorticity —V%}, is some function w, of the stream function
only, and therefore constant along streamlines. The form of this function
is determined by the flow far upstream. It vanishes in the present
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problem, as it does whenever the oncoming stream is irrotational. Hence
the problem for the first term of the outer expansion becomes

Vi =0 (7.72)
dy(x,0) = 0 (7.7b)
fy(x,¥) ~»  upstream (7.7¢)

Here the no-slip condition ¢, (x, 0) == 0 has been dropped because it is
unenforceable. The order of the differential equation is reduced by one
with neglect of the viscous term, and one boundary condition must
consequently be given up. The question of which boundary condition
to abandon can, in simple problems, be settled mathematically; here one
must be guided by experience and physical insight.

‘The solution of this problem is

(v, ¥) =y (7.8)

which represents simply the uniform parallel stream. At infinite Revnolds
number a flat plate causes no disturbance. The corresponding solution
for any other plane body free of separation is the inviscid potential flow.

7.4. Inner Expansion; Boundary-Layer Equations; Matching

Loss of the highest derivative is the classical hallmark of a singular
perturbation problem (Section 5.2); and we know that the basic inviscid
solution is not valid near the surface, where the no-slip condition had
to be abandoned. Thus the region of nonuniformity is the neighborhood
of a line, rather than of a point as in the thin-airfoil problems of Chapter
IV. Coordinates of order unity in that region will be obtained by magni-
fying the normal coordinate y, leaving v unaltered.

Prandtl was led to the proper magnification by physical intuition and
comparison with simple exact solutions. To some extent, however, one
can proceed formally. Let the width of the region of nonuniformity
(the boundary layer) be of order 4,(R), where 4, is a function that
vanishes as its argument becomes infinite. Then an appropriate magnified
(inner) normal coordinate is given by ¥ = y 4,(R), where the stretching
factor 1 4,(R) is still to be determined. As for the dependent variable,

it is clear at least physically that u — 1/1,/ must be of order unity inside
as well as outside the boundary layer, so that

J = 0(y) = 0(dy)

That is, » must be magnified by the same factor as y.
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Generalizing to higher approximations, we assume an inner expansion,
valid within the boundary layer, of the form

B, y3 R) ~ 4RIV (v, ¥) = A RP(x, V)

T A(RYW(x, Y) = -+ as R— o0 with x, Yfixed (7.9a)
where
- Y
Y= ——=— (7.9b)
4A4(R)

The 4, are an asymptotic sequence such that the ¥, are al} of order
unity in the boundary laver, where ¥ = O(l). We determine 4; by
subs—tituting this cxpansion into the Navier-Stokes ecquation (7.2a),
multiplying by 4,, and letting R tend to infinity. This gives

[r-—;r—r]’?{m” (7.10)

c

¢
(Yoo — Yo o

)'P“,Y = }eilg
Again the limit appearing here may be zero, infinite, or ﬁnit.e. The
first two possibilities lead to degenerate solutions that cannot satisfy the
inner boundary conditions and match the outer flow. Hence we chopse
the third possi'bility. That is, we apply again as invthe previous section
the principle of least degeneracy (cf. Section 5.5). Without loss of gener-
ality we take the constant limit to be unity, giving

A(R) = R, Y = Ri?y (7.11)

Thus we recover the familiar result that the boundary-layer thickness

is proportional to R™2, ' .
Equation (7.10) for the first term of the inner expansion now becomes

?'.

— P, ?F)"U“'Y =0 (7.12a)

This is a perfect differential, and can be written as

?(57 (Wl Yyy = lplqul Yy — '1U1Y'1Ul;vy) =0 (7-12b)

so that integrating yields a third-order equation:

Vivey — Py — ¥ y Py = f(%) (7.12¢)

The function of integration f(x) is proportional to the in?'iscid surfac.e
pressure gradient. This will be shown by matching with the basic
inviscid flow, which determines f(x) and also provides an outer boundary
condition.
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We apply the asymptotic matching principle (5.24) with m = n = 1.
It is sufficient, and more convenient at this stage, to match b, , which
has the physical interpretation of tangential velocity, rather than i itself.
Using the previous results (7.3), (7.5), (7.8), (7.9), and (7.11) we obtain
for any plane body:

L-term outer expansion: U, ~ i (x, 9) (7.13a)
rewritten in inner variables : =Y ,lx, — 7.13b
bl ) (7.13b)
1%
expanded for large R: =i, (x,0) + R D1y (3,0) - (7.13¢)
AY

l-term inner expansion: =%, 0) - (7.13d)
I-term inner expansion: Y, ~W¥iy(x, Y) (7.14a)
rewritten in outer variables: =¥ (v, VR y) (7.14b)
expanded for large R: = ¥ plx, 0) + - (7.14c¢)
l-term outer expansion: =¥ (x, 0) - (7.14d)

Here we have used certain properties of the functions ¢, and ¥, : we
take advantage in (7.13c) of the fact that (v, ) is analytic in y at
v =0, and in (7.14c) we assume that ¥, has a limit as Y approaches
infinity. Equating the two final results gives the required matching
condition:

Yip(x, o0) = ¥y,(x, 0) (7.15a)

This is recognized as the familiar requirement that the tangential
velocity approach at the outer edge of the boundary layer (Y = x) the
inviscid speed ¢,(v, 0). If we had matched i itself, the result would
have been

Wi(x, Y) ~ Y (5, 0) + o(Y) as ¥ >0 (7.15b)

This is obtainable from (7.15a) by integration; and it is in this sense,
as the first term of an asymptotic expansion for large Y, that the matching
condition is properly understood.

'The matching condition can be used to find the function of integration
f(x), by evaluating the boundary-layer equation (7.12¢c) at ¥ = 0. The
result is the conventional boundary-layer equation of Prandtl:

Frver = Yy — PPy = — $0u(x, O (x, 0) (7.16a)

The right-hand side is the (dimensionless) surface pressure gradient in the
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inviscid flow according to Bernoulli’s equation. This equation actually
applies to any plane body, where x is the distance along the surface
and y that normal to it, because curvature of the surface affects only the
second approximation of boundary-layer theory. The relevant boundary
conditions are those of zero velocity at a solid surface, which give, if ¥
is normalized to vanish on the body,

W(x,0) = ¥, ,(x,0) =0 (7.16b)

together with the matching condition (7.15). The latter is retained
despite its already having been used to evaluate the function of integra-
tion; it does double duty because ¥ = o0 is a singular point.

The boundary-layer equation (7.16a) is parabolic—with x as time-like
variable—although the original Navier-Stokes equation (7.2a) is elliptic.
This change of type (cf. Section 3.11) means that upstream influence 1s
suppressed. For this reason the first-order boundary layer on a flat
plate is quite unaffected by the trailing edge and the subsequent wake.

7.5. Boundary-T.ayer Solution for Flat Plate

For the flat plate the inviscid solution (7.8) gives no pressure gradient,
and the boundary-layer problem becomes
Fiyry + Pr¥iyy — ¥y =0 (7.17a)
Yi(x,0) =0 (7.17b)
P 1, finite plate
Piy(x,0) =0 for 0 <x< oo, semi-infinite (7.17¢)
Yp(x, 00) = 1 (7.174)

For the finite plate the boundary layers on the top and bottom surfaces
merge at the trailing edge and leave the plate as a wake without separating
(Fig. 7.5). Evidently the boundary-layer approximation continues to be

ittt

Fig. 7.5. Boundary layer and wake on finite plate.

valid in the wake, and the pressure gradient still vanishes. The only
change required is to replace the no-slip condition (7.17¢) by a require-
ment of symmetry
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Vy(,0) =0 for 1 < v (7.17¢)

We shall, however, follow the boundary layer in detail only back to the
trailing edge, because thercafter the low is not sclf-similar.

A self-similar solution exists on the plate because the problem has a
certain group property that permits its reduction to an ordinary differential
equation. T'his property is expressed by the fact that the problem (7.17)
is invariant® under the transformation

¥, — ¥, x — %y, Y — ¢V (7.18)

As in dimensional analysis--where invariance under changes of scale 1s
a physical necessity rather than, as here, a mathematical circumstance—
this means that the solution (if unique) cannot involve the variables
¥,, &, and Y separately, but only in combinations that are invariant
under the transformation. Some alternatives are

¥, x

Y o Yy

W, = tunction of v (7.19)
\/\ \/\

We choose the latter forms, inserting factors of 2 in accord with the
standard Falkner-Skan notation (Schlichting, 1960, p. 143; Rosenhead,
1963, p. 222):

—_— )v
TV

Reintroducing the original dimensional variables at this point shows
that the length L disappears from f; and », in accord with the facts
that it is arbitrary for the semi-infinite plate and irrelevant for the
boundary layer on a finite plate. This is another way of motivating
the group transformation.

Substituting (7.20) into the boundary-layer problem (7.17) gives

Pi(x, V) = V24 (), (7.20)

ALY+ hf =0 (7.21a)
f(0) =£,'(0) =0 (7.21Db)
fi'(0) =1 (7.21¢)

This is the Prandtl-Blasius problem, free of factors of 2 that appear in

* In the case of the finite flat plate, the length changes from 1 to ¢* under this trans-
formation. Hence it is essential to recognize that the boundary layer on the plate is
unaffected by the wake in order to appreciate the invariance.
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carlier references. It must be integrated numerically. Blasius originally
patched a series solution for small 5 to an asymptotic expansion for large
7. However, Weyvl (1942) points out that this is a dangerous business,
because the first series has only a modest radius of convergence (and the
sccond probably none). It is safer, and now simpler with electronic
computers, to integrate numerically from » = 0 to some reasonably
large value, sav 4 — 5 or 10.

This is a two-point boundary-value problem, which would ordinarily
require repeated guessing of f1'(0) to satisfv the condition (7.21¢) for
large . In the present problem, however, this complication can be
avoided by exploiting another group property of the solution. The
differential equation (7.21a) and initial conditions (7.21b) are invariant
under the transformation

. 1
fo e o (7.22)

One can therefore integrate the problem (7.21) with (7.21¢) replaced by
f1(0) = 1, and subsequently pick the constant ¢ to satisfv the condition
at infinity (Goldstein, 1938, p. 135; Rosenhcad, 1963, p. 223).

FFor our purposes the essential results of the numerical solution are

contained in the expansions for small and large 7:

A0 = At = OGP, &y = 0.469600 (7.23a)
~7 — By —exp, By = 121678 (7.23b)

Here “exp” stands for terms that are exponentially small for large 7.
This means that the vorticity generated by shear at the wall decays
through the boundary layer faster than any power of 7. T'hat this must
be true for any boundary layer is suggested by the analogy with diffusion
of heat (Rosenhead, 1963, p. 216) and by certain mathematical arguments
(Stewartson, 1957; Chang, 1961). We shall sce later that the condition of
exponential decay of vorticity must be enforced in cases where it is not
automatically satistied.

7.6. Uniqueness of the Blasius Solution

The above solution of the problem (7.17) is not unique from a mathe-
matical viewpoint. T'o it may be added any one of an infinite discrete set
of eigensolutions, each of which satisfies a linear perturbation equation de-
rived from (7.17a), together with the zero initial conditions (7.17b,c), and
exhibits exponential decay at infinity (Stewartson, 1957; Libby and Fox,
1963). These have the form

Pon(x, YV) = C xi~ine, (1) (7.24a)
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where the C,, are arbitrary constants, and (Libby, 1965)
A, =1, 1.887, 2814, 3.758, 4.704, ... (7.24b)

n

The first of these eigensolutions is the x-derivative of the Blasius

soluti 7.20):
solution ( ) I‘Ui” = Cx 2 f,(n) — nf, ()] (7.25)

It represents physically a slight uncertainty in the effective location of the
origin of abscissae. Similarly, the higher eigensolutions represent further
uncertainty about the details of the flow near the leading edge. However,
they have no such simple interpretation as the first. Stewartson (1957)
has discussed how indeterminacy arises in any downstream expansion
for a boundary layer, because the initial conditions are not imposed
(cf. Section 3.10).

We can properly dismiss all eigensolutions at this stage by invoking
the principle of minimum singularity (Section 4.5). It is more illumi-
nating, however, to understand why the principle applies. The reference
length and the associated parameter R are artificial; hence the dimension-
less variables must occur only as Ry, Ry, and Ry in order that L will
disappear from the result. The Blasius solution has this property. The
first eigensolution (7.25) has it only if the constant (' is of order R
But this means it belongs to the third approximation (Section 7.11)
rather than the first. In the same way the higher eigensolutions are
relegated to higher approximations. This is a typical argument involving
an artificial parameter; for further discussion see lagerstrom and Cole
(1955), Chang (1961), and Exercise 4.8.

This argument would not apply to a blunt-nosed flat plate (Fig. 7.2),
which has a real geometric length L. Indeed, all the eigensolutions must
be retained there in the asymptotic expansion of the first-order boundary-
layer solution. They are not excluded by the principle of minimum
singularity, because more singular terms appear. For example, for the
parabola the expansion contains a term in x~'/? log x between the Blasius
solution and the first eigensolution. The resulting expression for skin
friction was given as equation (3.27) in Chapter III; and we show in
Section 10.9 how the constant C can be found approximately by joining
with another expansion from the nose or patching with a numerical
solution.

7.7. Flow due to Displacement Thickness

It was observed in Section 5.9 that the normal matching order of
Fig. 5.6 must be followed in the direct problem of boundary-layer
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theory. We therefore proceed to the second term in the outer expansion
(7.3).

The nature of the factor 8,(R), together with the matching conditions,
is found by matching with the boundary-layer solution. At this stage,
matching ¢, does not suffice; one must match ¢ itself, or i, as well

as s, . Using all previous results, we find

1-term inner expansion: $ o~ \/LR V2xf() (7.26a)
. . . vV Rv
rewritten in outer variables: = 7.26b
vl (7260)
1 = \/Fy
expanded for large R: s —— /2 — By —ex 7.26¢
p g T \(\/zx By — exp) (7.26¢)
2-term outer expansion: =y — \/—1 By V2x (7.26d)
rewritten in inner variables = /YR \/ R B,V 2\ (7.26¢)
v :
2-term outer expansion: Y~y + Sy(R)s(x, ¥) (7.27a)
. o . Y Y
ritt rariables: =— — o Xy —— .
rewritten in inner variables VR Sy( )¢_( X, i R) (7.27b)
Y
expanded for large R: = ﬁ — 8y(R)[hy(x, 0) == -] (7.27¢)

Here we have in (7.26c) used the asymptotic expansion (7.23b) for the
Blasius function f; , and in (7.27¢) the fact that i, , like ¢, , is analytic
inyaty=0.

We now apply the asymptotic matching principle (5.24) with m = |
and n = 2. Comparing (7.26¢) and (7.27c) shows that §,(R) must be
some multiple of R71/2; we choose

i
8,(R) = = - (7.28)

It then follows that
Po(r,0) = — B V2x . (7.29a)

This has a familiar physical interpretation in terms of the displace-
ment thickness of the boundary layer. Substituting into (7.27) shows
that the outer expansion for the stream function appears to vanish at
y = ByR7Y2(2x)/2. Thus the boundary layer displaces the outer inviscid
flow like a solid parabola of nose radius 8;2/R. The matching condition
(7.29a) is the linearized thin-airfoil approximation, transferred to the
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axis (Section 4.2), to the tangency condition for the displacement
parabola. o .

An alternative form, with a slightly different physical interpretation,
results from differentiating (7.29a) with respect to a:

(6, 0) = 29b

o, 0) Vo (7.29b)

This is the second-order component of normal velocity in the outer

flow, evaluated at the surface, where it is required to cqual the slope of

the displacement parabola. From this point of view, the displacement

effect of the boundary layer acts like a surface distribution of sources.

This is the thin-airfoil condition of Section 4.3. A detailed discussion

of various interpretations of the displacement effect is given by Lighthill

(1958).

Substituting the outer expansion (7.3) into the full cquation (7.2a)

vields a linear equation for i, :

4 1 5 ¢ ¢ 2
(951/, v s Ty)v"‘//z = (‘/‘zzz v o, f)')v g =0 (7.30a)

The nonlinear convective terms have split into two, as usual in a pertur-
bation scheme. The two terms represent, respectively, convection of
second-order vorticity along first-order streamlines and of first-order
vorticity along second-order corrections to the streamlines. The latter
term vanishes in our problem, and whenever the oncoming stream is
irrotational. Viscosity has no effect at this stage, the flow outside the
boundary laver being inviscid at least to second order, and to every
order when the oncoming stream is irrotational. Then (7.30a) has the
first integral S = i) (7.300)
However, the second-order outer vorticity w, also vanishes when the
oncoming stream is irrotational, so that i, then satisties the Laplace
equation.

7.8. Second-Order Boundary Layer for Semi-Infinite Plate

For the semi-infinite flat plate, the problem for the flow due to
displacement thickness 1s

Vv, =0 (7.31a)
bl 0) — {0, B x <0 (7.31b)

[— B, V2%, x>0 (7.31c)
Po(x, y) = o(y) upstream (7.31d)
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‘The condition (7.31b) of symmetric flow serves to rule out circulatory
motion. T'his is the lincarized thin-airfoil problem for potential flow
past the displacement parabola v — 5,(2v R)! 2. We require only the
surface speed, which was found in Section 4.8. However, the full solution
is obvious from the viewpoint of complex-variable theory:

do(n,¥) = By ReV2(x © iy) (7.32)

where Re indicates the real part.

The form of d,(R) in (7.92) and a matching condition for ¥, are
found as before by applving the matching principle with m = n — 2.
Extending the procedure of (7.13) gives as the 2-term inner expansion
of the 2-term outer expansion of W

0

2-inner (2-outer) s, = |
( / VR

(7.33a)

We exhibit the sccond term because its coefficient will be different from
zero in any other problem, including that of the finite plate. Conversely,
we have
2-outer (2-inner) ¢, = 1 — R 2A,(R)W, (v, %) (7.33b)
Here we have assumed that the limit ¥, (v, %) exists; for a case where
it does not, sce Exercise 7.2.
Matching suggests that we mayv in general choose

ARy = -~ (7.34)

so that both the iner and outer expansions proceed by inverse half
powers of the Reynolds number. This is true for an analvtic body
(Van Dyke, 1962a), but only to sccond order for one with corners, as we
shall see in Section 7.11. Completing the matching provides, for a
general body, a condition on ¥,,(x, %), which has the physical inter-
pretation of the increment in tangential velocity at the edge of the
boundary layer. For the plate we have

W, (x, ) = 0 (7.35)

because the displacement speed vanishes at v — 0. An infinite parabolic
cylinder has the unique property that in thin-airfoil theory its surface
speed 1s just the speed of the free stream.

Substituting the inner expansion (7.9) into the full equation (7.2a)
vields again a perfect differential as the equation for ¥, :

Ef
oY

(l[j‘l)')')' . l{/l‘t‘IIUZ)')' - 11[/1 )")U:ZJ‘)' T ])U:ETWlYY - IIU'I Ylfjlif)') =0 (736)
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This vanishes only for the flat plate; for any other shape the right-hand
side will contain terms proportional to the local curvature of the surface
(Van Dyke, 1962a).

The surface boundary conditions are ¥y(x, 0) = ¥yp(x,0) = 0 for
any body. Hence for the semi-infinite flat plate P, satistics a completely
homogeneous problem. "T'he solution must vanish if it is unique. Although
it could be nonunique by any of the cigensolutions (7.24), the argument
of Section 7.6 shows that none can appear until the next approximation.
Thus Wy(x, ¥) = 0, and the complete sccond approximation is

/

s y— -1 B Rev2(x ©iy), outer (7.372)
VR
P(x, vy R) ~ . .
/2x A/ Ry
V2 1(&) . _0’ inner (7.37b)
VR T'W2x R

\

7.9. Second-Order Boundary Layer for Finite Plate

Prandtl himself discussed (Prandtl, 1935, p. 90) how the Blasius

solution could be improved by successive approximations:
Instcad of the simple parallel flow, the flow around a parabolic
cylinder ... should be introduced, which would slightly alter
the pressure distribution. The ... calculation would have to be
repeated for this new pressure distribution and if necessary the
process repeated on the basis of the new measure of displace-
ment so obtained.

However, we have seen that because of a coincidence peculiar to the
parabola, this procedure gives no second-order contribution for the
semi-infinite plate.

For the finite plate, on the other hand, Prandtl’s procedure gives a
significant result. 'The details have been carried out by Kuo (1953)
whose analysis is, however, subject to criticism on several points. Because
the boundary-layer equations are parabolic, Blasius’ solution is valid
ahead of the trailing edge. Behind the trailing edge, the displacement
thickness of the wake is very difficult to calculate (Rosenhead, 1963,
p. 280). Kuo makes the perhaps reasonable assumption that it can be
taken as constant at its value at the trailing edge (Fig. 7.6). Then in the

Fig. 7.6. Assumed form of displacement thickness for finite plate.
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ﬂovx d}l@ to displacement thickness the surface speed is increased slightly
Ihls is evident if one regards the difference between the displacemeﬁ£
thickness in the wake and that for the infinite plate—which has no effect
at the. surface --as due to a distribution of sinks.

This thin-airfoil problem can be solved by the methods of Chapter IV,

E‘hus the second-order matching condition (7.35) is found to be replaced
s:'

- \V2rVx 1 Va 7 3 5

1 Lo/ x /9 . 2
W, (x, ) D log - V¥ 12_51(1 IS )

[h‘IS function is logarithmically infinite at the trailing edge, and the
series expansion shown does not converge there. Nevertheless, Kuo
TOQ O QY . 1 ) ;
§01\ es the sccond-order boundary-layer equation (7.36) by correspond-
ingly expanding ¥, as '
S 2B ‘
Pyl V) = = W3 (n) — 5592y (n) + -] (7.39)

m

The problems for the first nine f, have been integrated numerically
and the remainder approximated. Thus Kuo estimates the sum of tlie:
slowly convergent series for the integrated skin friction. For one side of
the plate the result is, 7 being the shear, \

L .
CJomdy 1328 412
U2 /R R

CF

(7.40)

This result is in excellent accord with experiments down to K = 10. How-
ever, the coefficient 4.12 will be increased by an additional effect, overlooked
by Kuo, that is discussed in the next section.

7.10. Local and Integrated Skin Friction

Con§1der again the semi-infinite plate. From the two-term inner
expansion (7.37b) we calculate the local coefficient of skin friction:

T 0664 0
VR TR (7.41)
Here R, == Ux v is the local Reynolds number, based on distance from

the leading edge. The first term is integrable, and yields the classical
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value for the coefficient of integrated skin friction on one side of the
plate: ,
Jocrds 1328 L (7.42)

r x VR,

The second term in (7.41) would not be integrable, except for ic
circumstance that its coeflicient is zero, because the asymptotic expansion
is not valid near the leading cdge. The second term n thc integrated
skin friction has nevertheless been calculated in an ingenious \.\'ay.b_\'
Imai (1957a). He avoids the difficulty at the lca'dmg cdg? b\ conmdcrrmg
the balance of momentum in a large contour (Fig. 7.7). 'T'his corresponds

Flow due to
displacement

- Blasius
T IZ7 772777715

Fig. 7.7. Momentum contour for semi-infinite plate.

to Jones’ treatment of leading-edge drag in thin-airfoil theory (Scction
4.6). Using the Blasius solution in the boundary laver, and the flow due
to displacement thickness in the outer flow, he finds

1328 2326

208 R (7.43)
VR, R,

Cp~

It is remarkable that 50 vears were required to discover that one term of
the boundary-layer solution provides two terms of the friction dl.rag. .

Although the details are complicated, this rcsul't is almost ob\"mus in
the light of Section 4.6. The first term in (7.43), arising from ttle integra-
tion across the boundary layer, is the classical result (7.42). The second
term arises from integration around the rest of the contour, where the
flow is inviscid. It is therefore just the leading-edge drag (4.22) for the
displacement parabola of nose radius @ = B,* R, the constant 2.326
being 376,%. .

The second term in (7.43) thus represents a force at the lewadmg edge.
Of course it is concentrated there only on the gross scale of boundary-
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laver theory. Actually, it must be the result of an increase in local skin
friction above the Blasius value near the leading edge, where the local
Revnolds number is of order unity. Nothing else i1s known about the
flow in that region, except that it presumably has the form (3.24).

Because it 1s a local effect, the concentrated force will appear also at
the leading edge of the finite flat plate. It was, however, overlooked by
Kuo. With this addition, and the revision suggested previously, the
cocfhicient 4.12 in (7.40) 1s replaced by something like 5.3. The result 1s
still in reasonable accord with experiment, while leaving some scope for
third-order ctfects.

One may ask whether a concentrated force appears also at the trailing
edge. Reflection suggests that it does, but that whercas the leading edge
18 exposed to the free stream, the trailing edge is sheltered by the rela-
tively thick boundary laver. Consequently, the trailing-edge force would
contribute only a third-order term, proportional to R7#2 Clear indica-
tions of such a difference between the leading and trailing edges are scen
in the numerical solutions for a finite flat plate carried out by Janssen

(1958).

7.11. Third Approximation for Semi-Infinite Plate

Third-order boundary-layver theory has been studied only for the semi-
infinite plate. At this stage the difficulties arising from the nonanalvtic
leading edge become severe. For that and other reasons, the first attempts
of Alden (1948) and others were erroneous. The correct solution was
given by Goldstein (1956) and Imai (1957a), and is described in detail in
the book of Goldstein (1960).

All those analvses use parabolic coordinates, but we can persevere
with Cartesian coordinates. The third term in the outer expansion is
seen to vanish, because it represents the displacement effect of the second
term in the boundary layer, which is zero. The equation for the third
approximation in the boundary layer is found to be (since ¥, — 0).

&
Yy (Fayyy — Pr¥lary = WinWer — V¥ - i ¥sy)
. R 3=
= (PiPhor - Pr¥ry — 2¥W00yy) ll?linx [ZS@T] (7.44)

In order to balance the nonhomogencous terms on the right, there must
be a term in the inner expansion (7.9) with 44(R) — 1 R*2 This yields
the problem solved by Alden. However, the resulting vorticity is found
to decay only algebraically for large », which is unacceptable (Section
7.5). T'his difficulty arises because of the sharp leading edge. On an

See
Note
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analytic body, a well-defined boundary layer exists beginning at the
stagnation point, and exponential decay of vorticity is automatically
assured. Near the sharp edge of the plate, on the other hand, the bound-
ary-layer approximation is invalid. Although it becomes valid far
downstream, exponential decay is not assured, but must be enforced.
This is achieved by adding to ¥, a term involving log x. Then for
the solution to be independent of I there must be a corresponding

term with
4(R) = (log R) R2.

Thus the inner expansion is found to have the form

f:xz(ﬁ) f:n(*l) RN

0 L [log Rx DV
(7.45)

1 o
o R) ~ /Ix I -
H(x, v R) \/R\ vf1(n) - : 2y V2

R 1{3 2
Although the problem for f3, is homogeneous, the solution is not zero
but is the first cigensolution (7.25). Exponential decay of vorticity in fy;
can be achieved by proper choice of the constant C, .
A final difficulty remains, however. The solution for f3; is nonunique
by the first eigensolution, and no way is known of determining its con-
stant. Thus the local coefficient of skin friction is given by

logR, = C-

/ 32 302
V'R, R R

Cyp ~

and the integrated skin friction (Imai 1957a) by

2 0204 - 2C
138 2326 o logR, 0204 -6, gy

¢
VR, R, RS2 RS

J

where the constant '} is unknown. As discussed by Goldstein (1960),
similar undetermined constants arise in higher approximations. These
depend on certain details of the flow near the leading edge. Whether it
is possible, even in principle, to determine them—short of solving the
problem exactly—is at present a mystery. Imai (1957a) has estimated
C, by patching (7.47) at R, —= | with the result of the approximation
(3.24) for the leading edge.

7.12, The Effect of Changing Boundary-Layer Coordinates

The boundary-layer solution can be combined with the associated
outer expansion, using the methods of Section 5.10, to form a composite
result. We consider instead a significant alternative way of forming a
single uniformly valid expansion. This is Kaplun’s (1954) method of
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optimal coordinates, in which the independent variables are altered to
make the boundary-laver solution uniformly valid.

We must first discuss how the boundary-laver solution is affected by
a change of coordinates. This question was implicit in the preceding
section when we obscrved that recent investigations of the semi-infinite
flat plate have been carried out in parabolic rather than the traditional
Cartesian coordinates.

Suppose that the entire Prandtl boundary-layer analysis is repecated
in a different coordinate system. That is, the Navier-Stokes equations
are written in the new system, the strecam function and coordinate
normal to the surface are magnified by a factor R'?) the limit process
R — o is carried out, and the resulting boundary-laver equation is
solved subject to zero velocity at the surface and matching with the
basic inviscid flow. One finds that although the outer expansion is inva-
riant, the boundary-layer solution is not, so that it represents an altered
flow field. Different coordinate systems vield boundary-laver solutions
that are identical at the surface and differ only negligibly within the
boundary layer—so that the skin friction is invariant—but may differ
wildly outside the boundary laver.

For this reason, it has been customaryv to disregard the boundary-
layer solution outside the boundary layer, where it is replaced by the
matched inviscid flow. However, Kaplun’s viewpoint is quite different.
He takes advantage of the changes by secking a special system of coor-
dinates in which the boundary-layer solution approaches the outer flow
as closely as possible.

It is not necessary to repeat the boundary-laver solution when the
coordinates are changed. If the solution has been calculated in any
convenient coordinate system, its counterpart in any other system is
given by a simple rule. Suppose that the boundary-layer solution for
steady plane flow past any body has been computed using coordinates
(x, »), which are not necessarily orthogonal, but are for convenience
chosen such that the body is described by y == 0. Then just as for the
flat plate in Section 7.8, the classical first three steps of the boundary-
layer procedure yield a solution correct to order R '/? in the form

(%, y) + —1-—, o, ¥) — -+ as R— oo with x93y >0 fixed

VR
y (7.48a)
\—/l—f (3, VRy) = - as R— oo with x vV Ry fixed
(7.48b)

Now suppose that a different coordinate system (¢, ») is introduced
such that again, for convenience, the body is described by » = 0. [The
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present » must not be confused with the Blasius variable of (7.20).] If
the transformation is regular at the surface, we have by Taylor series
expansion

x = a(¢ ) = 5(£,0) + Ol) (7.492)
y = y(& 1) = 1y,(&0) -~ O(?) (7.49b)

Because the outer expansion is invariant under change of coordinates,
its expression in the new coordinates is found simply by introducing
the transformation (7.49) into (7.48a). However, the same is not true of
the boundary-layer solution. Its new form is found by introducing
(7.49) into (7.48b), expanding in Taylor series, and discarding terms
that are of order R-!in the inner variables. Thus the solution in the
new coordinate system is found to be

B 1 6] = e ) 6] = (7.500)
‘~ v

e, 00, Ry, (6,0)] + (7.50b)

VR

The latter of these is Kaplun’s correlation theorem.

7.13. Alternative Coordinates for Flat Plate

[n Cartesian coordinates (x, v) the boundary-layer solution for the
semi-infinite flat plate is given by (7.37). Let us introduce parabolic
coordinates (&, n) by setting

N W .
vy = b ) ATE (7.51)

These are more natural coordinates for the problem (cf. Section 10.6)
because—in contrast to Cartesian coordinates—the whole body and
nothing else is described by 5 = 0. They arc therefore preferable for
this as well as other problems in mathematical physics involving a half
plane. Applying the correlation theorem (7.50) gives the solution in
parabolic coordinates as

L &y — \/IR Bi& + -y outer (7.52a)
VITe’ £f,(V Ry) - -+, inner (7.52b)
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The result has been simplified in appearance. Furthermore, whereas in
Cartesian coordinates the boundary-laver vorticity is infinite along the
entire vertical line v == 0, in parabolic coordinates it is singular only at
the point at the origin. Thus parabolic coordinates are seen to be supe;i()r
to Cartesian coordinates in this problem.

e

Parabolic

LL[IlIlllIIllllIIIIllll—-—)x

Shrinking
rectangular

Fig. 7.8. Coordinate systems for semi-intinite plate.

‘ !t Is instructive to consider a third system, which will be found to be
inferior to Cartesian coordinates. What mav be described as “‘shrinking
N aw?? : . - A : : N - . .
rectangular’” coordinates (¢, %), indicated in the lower half of Fig. 7.8,
are given by

é =y, X

%

(7.53)

Py . ol

o=y v=30W1 4 — 1)

:'\pplymg the correlation theorem gives for the boundarv-layer solution
in thus system: o

/ N ‘
T TE A A |
’ (V=4 1) — \/;? Re \ 26— (\/1 o 4f — 1) = - (7.54a)
~ . \/fﬁﬁ
—\ e
VR 261 \/25) v (7.54b)

We now examine the behavior in the outer region of the boundary-layer
solution 1n each of these coordinate svstems. We form the two-term

See
Note
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outer expansion of the one-term inner expansion. Using the asymptotic
form (7.23b) for the Blasius function gives

s
- . V2B

Cartesian: y o T e 7.55a

3 Vi (7.55a)

parabolic: &y —- Py - &+ (7.55b)
VR

shrinking rectangular: no— Bl Vfg + e (7.55¢)
' VR

Comparing with the corresponding outer expansions (7.37a), (7.52a),
and (7.54a) shows that parabolic coordinates have reproduced two
terms, Cartesian coordinates only one, and shrinking rectangular
coordinates none at all. Accordingly, we say that the boundary-layer
solution in parabolic coordinates contains not only the basic inviscid
flow but also that due to displacement thickness. 'The boundary-layer
solution is uniformly valid to order R ' 2, so that the outer expansion is
superfluous. Coordinates having this property are said to be optimal.

Cartesian coordinates are not optimal according to this definition.
However, they lead to a boundary-layer solution that contains the basic
inviscid flow, and is therefore uniformly valid to first order. We may
therefore say that Cartesian coordinates arc semioptimal in this problem.
By contrast, the boundary-layer solution in shrinking rectangular
coordinates is utterly useless in the outer flow; and no more than this
can be anticipated in general.

7.14. Determination of Optimal Coordinates

Kaplun’s search for optimal coordinates was inspired by the discovery
that if the Navier-Stokes equations are approximated by the linearized
Oseen equations (Chapter VIII), the boundary-layer solution is the exact
solution if parabolic coordinates are used (Exercise 8.1). This, together
with other considerations already mentioned, suggested that parabolic
coordinates may be preferable for the flat plate also when the full Navier-
Stokes equations are used; and this has been seen to be true.

The question arises: how can optimal coordinates be found for other
shapes > A very simple answer has been given by Kaplun. Carry out the
solution to order R-'/2 in any convenient coordinate system (x, y); it
will have the form (7.48). Then an optimal coordinate system is given by

gopt(x'» }’) == (ﬁg(x, }’), Uom(x’ y) = ¢1(x’ y) (75621)
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Optimal coordinates are not unique, but the most general system is
given by -
gop!(‘\ﬂs y) = Fl[‘r/"z(x> y)]
7]@;){(90; y) = ‘/’1(‘“ y)F'l[ll'z(x! _}’)]

where F'; and F, are arbitrary functions.

As an example, consider again the semi-infinite plate, and the bound-
ary-layer solution (7.37) in Cartesian coordinates. From (7.56a) we find,
using the generality of (7.56b) only to drop irrelevant constant factors,

(7.56b)

Eop = Ren/2

CErR 7
Topt - =y - g-’] ( 57)
These are not orthogonal; an orthogonal system is obtained from (7.56b)
by taking F,($,) — 1| ,, which vields the parabolic coordinates of
(7.51).
Other examples are given by Kaplun (1954). An interesting case is
flow normal to an infinite plane wall. Cartesian coordinates are optimal,
and the boundary-layer solution satisfies the full Navier-Stokes equations.

7.15. Extension of the Idea of Optimal Coordinates

Optimal coordinates probablyv exist also for second- and higher-order
boundary-laver theory, although the rules for finding them are not vet
known. They could presumably be found also for three-dimensional and
compressible boundary lavers.

A more significant generalization would be to other kinds of singular
perturbation problems. We may ask, for example, whether opt'imal
coordinates can be found for the thin-airfoil problems of Chapter IV.
As a simple test, consider the surface speed on an ellipse of thickness
Fatio ¢ (Iig. 4.2). Corresponding to (7.48), the 2-term outer and 1-term
inner expansions (4.13) and (4.46) are

1= e as e—>0 with s >0 fixed (7.58a)
4 )
U f28 . ; s .
NS as ¢—>0 with S -= = fixed (7.58b)
Replacing the abscissa s mecasured from the leading edge by a new
coordinate o, which vanishes when s does, transforms the inner solution

(7.58b) to

E~N T ) (7.59)
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This is the counterpart of Kaplun’s correlation theorem (7.50b). The
2-term outer expansion of this is simply unity. Therefore in this example
any coordinate is semioptimal, but none is optimal.

This matter deserves further study, together with the question of the
connection between Kaplun’s optimal coordinates and ILighthill's
strained coordinates (Chapter VI). They have in common the idea of
achieving uniformity by modifving the independent variables. A superfi-
cial difference is that Kaplun changes inner coordinates whereas Lighthill
strains the outer ones. However, this is irrelevant insofar as there 1s a
duality between inner and outer expansions (Section 5.9). A more
significant difference appears in the way in which the modification of
coordinates is determined. Whereas Kaplun requires that the inner
solution be valid insofar as possible in the outer region, Lighthill imposes
the cruder condition that singularities not be compounded. It is conceiv-
able that after appropriate generalization and refinement of both methods,
they may be found to represent two faces of the same coin. Sce also
Section 10.4.

EXERCISES

7.1. Boundary layver on a wedge. Consider symmetric viscous flow past a
semi-infinite wedge of semivertex angle Sz 2. Calculate the potential flow, and
describe how the upstream condition (7.2d) for the Navier-Stokes equations
must be modified. Discuss the applicability of the boundary-layer solutions as
a coordinate perturbation and as a parameter perturbation. Show, by exploiting
its group property, that Prandtl’s boundary-layer equation (7.16a) can be
reduced to the Falkner-Skan cquation

[ =B —f7) =0

Assuming required numerical properties of f, calculate the flow due to dis-
placement thickness. Find orthogonal optimal coordinates. Calculate the
second-order boundary-layer solution. Is there a concentrated force at the
leading edge ?

7.2. Boundary layer on flat plate in shear flow. As a model of the effect of
external vorticity on a boundary layer, consider a semi-infinite flat plate at
zero incidence in a parallel stream with constant vorticity, its speed being
{7 — wy. Derive the problem for the second approximation in the boundary
layer, showing that the matching condition has the form

Yy(x, Y) ~a¥? 4 bY 4 O(1) as Y — oo
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Show that interaction between the displacement effect and the external vorticity
induces a second-order pressure gradient on the boundary layer. Reduce the
problem to a third-order ordinary ditferential equation with proper boundary
conditions. [T'he definitive treatment of this controversial problem, together
with carlier references, is given by Murray (1961).]

7.3. Inzerse boundary-laver problem. Suppose that we solve the inverse rather
than the dircct problem in boundary-layer theory, in the following sense:
we seek the body that produces a given inviscid flow outside the boundary
laver. Explain why the asymptotic sequences for the inner and outer expansions
are not the successive powers of R 12 of the direct problem. Carry the solution
as far as practicable for the upper surface of a body that has a uniform parallel

stream outside the boundary laver.

7.4. Second-order correlation theorem. Show that the sccond-order counterpart
of (7.50b) 1s

| . | See
o~ —— (& 0), vV Ry, (6,0)] - 5Pl ] Note
vV R ‘ R 9

= VR, (6,00, + YRy, (6,001, [ 1}
where all square brackets contain the same arguments as the first.

7.5. Slip sublaver. 1f slight slip is admitted at the surface, the second of the
boundary conditions (7.16b) is replaced by

W (0, 0) = eW (6 0), e

Calculate the boundary-layer solution for the semi-infinite flat plate to order ¢
by perturbing the solution for & -~ 0. Note that the perturbation is the -
derivative of the basic solution (Lin and Schaaf, 1951). Show that this approxima-
tion is not valid in a thin sublayer near the surface. Construct the first term of a
supplementary expansion valid in that region.




Chapter VIII

VISCOUS FLOW
AT LOW REYNOLDS NUMBER

8.1. Introduction

We consider now incompressible flow past a body at low Revnolds
number, as exemplified by the sphere and circular cylinder (Fig. 8.1).

r/
U=l 8
[:"> .
I
v‘-‘,;?-

Fig. 8.1. Notation for sphere and circle.

Every high-school student learns that Millikan calculated the drag of an
oil drop using the approximation developed by Stokes in 1851:

Cp= o~ as R= 20 (8.1a)
A second approximation was found by Oseen in 1910:
Cp~ %’ (1 + 2R) (8.1b)

However, only in 1957 was it shown how further terms [cf. (1.4)] can
be calculated using the method of matched asymptotic expansions.
The classical warning of singular behavior is absent; the highest
derivatives are retained in the Navier-Stokes equations in the limit
R — 0. However, the problem contains two characteristic lengths: the
radius @ and the viscous length v U. Their ratio is the Reynolds number,
so that in the limit R — 0 the viscous length becomes vastly greater than
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the radius of the body. Hence singular behavior can be anticipated
according to the physical criterion advanced in Section 5.3.

Viscous flows at low Reynolds number are easily observed experi-
mentally, in contrast with those at high Reynolds number. Fig. 8.2
shows the sequence of flow patterns for a sphere or circular cylinder as

Fig. 8.2. Flow patterns for sphere or circle at low Reynolds number. (a) No eddies.
(b) Standing eddies. (c) Unsteady flow.

the Reynolds number increases. At very low speeds the streamline
pattern 1s almost symmetrical fore and aft. A closed recirculating wake
or standing eddy makes its appearance at about R = 10 for a sphere and
R = 2.5 for a circle (our Reynolds number being based upon radius
rather than diameter). One may imagine that the eddies alwayvs exist
inside the body, and at these Revnolds numbers penetrate thrc;ugh its
surface (cf. Fig. 8.3). The flow becomes unsteady, with oscillations of

2-term Stokes
expansion for R = ®

(o]
N~ From photograph by
Taneda (1956), R=36.6

Fig. 8.3. Shape of standing eddy bchind sphere.

the downstream part of the wake, at about R == 65 for a sphere and
R =I5 for a circle. The flow becomes irregular, with separation of
vortices from the rear of the body, above about R = 100 for a sphere
and R = 20 for a circle.
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8.2. Stokes’ Solution for Sphere and Circle

Stokes reasoned that at low speeds the inertia forces, represented by
the convective terms in the Navier-Stokes equations, are ineffective
because they are quadratic in the velocity. Hence at low Reynolds num-
ber the pressure forces must be nearly balanced by viscous forces alone.
As a first approximation, Stokes neglected the convective terms. In plane
flow the result is the biharmonic equation for the stream function:

(O Ve L@ g
Vi = ( crt v or vt of? )l’b =0 (8.22)

This follows formally from (7.2a) by letting R — 0. In axisymmetric
flow, the corresponding result is

[ 2 sinf ¢ ( 1 e \)] b—0 (8.2b)

ot o ol
Let lengths be made dimensionless by reference to the radius a, and

velocities by reference to the free-stream speed U (I'ig. 8.2). Then the
boundary conditions of zero velocity at the surface are

$(1,0) = ¢,(1,6) == 0 (8.3a)
and the condition of uniform tlow upstream is
S(r, 0 \r sin 6, plane R (8.3b)
(r. ) 1352 sin? 6, axisvmmetric - )

For the circle a symmetry condition must be added to rule out circulation.
Consider first the sphere. The upstream condition (8.3b) suggests
separating variables, seeking a solution of the form s = sin® 0 f(r). This
leads to
. 5 1
J = sin? 6’374, v, —}f—{ (8.4)

The upstream condition shows that no term in 7* can be tolerated, and
that the cocflicient of the term in 72 is 3. Then the surface conditions
(8.3a) fix the coeflicients of » and 1 7, giving Stokes’ approximation:

1 ' l 9
b~ Zi(2;,2 — 3 - 7) sin2 8 (8.5)

The first term is the uniform stream, and the third a dipole at the
center of the sphere, both representing irrotational flows. The second
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term, which contains all the vorticity, has been dubbed a ‘“stokeslet”
by Hancock (1953), who used a linear distribution of these three elements
to simulate a swimming worm. For inviscid flow the stokeslet is absent,
and the cocflicient of the dipole 1s Linstead of 4. Calculating the
skin friction gives two-thirds of the drag (8.1a), the remaining third
being pressure drag (l'omotika and Aoi, 1950). The flow pattern is
symmetric fore and aft, and 1s therefore free of eddies as in Fig. 8.2a.
Consider now the circular cylinder. The upstrecam condition (8.3b)
suggests seeking a solution of the form b = sin 6 f(r), which leads to

¢ = sin 6:r3, rlogr, 7, %: (8.6)
Imposing the conditions (8.3a) at the surface reduces this to
PV TR (e S U e
b~ C[(l +2plogr — 5 — =5~ =3 ] sin 6 (8.7)

We can invoke the principle of minirnum singularity (Section 4.5),
choosing £ = 0 so that the stream function and velocity grow as slowly
as possible with 7. This leaves

}‘) sin @ (8.8)

b -

o~ C(yr log r —%r +

The second term is the uniform parallel stream, the third a dipole at the
origin, and the first a two-dimensional stokeslet containing the vorticity.
The solution cannot be completed, however, because no choice of the
constant C satisfies the upstream condition (8.3b). The difficulty is that,
in contrast with the solution for the sphere, the stokeslet is now more
singular at infinity than a uniform stream, and so predicts velocities that
are unbounded far from the body.

8.3. The Paradoxes of Stokes and Whitehead

The nonexistence of a solution of Stokes’ equation for unbounded
plane flow past any body is known as Stokes’ paradox. Stokes himself
(1851) regarded it as an indication that no stecady flow exists; a body
started from rest would entrain a continually increasing quantity of
fluid. However, this explanation is now believed to be incorrect, for
reasons discussed in the next section,

Indeed, analogous difficulties arise with three-dimensional bodies,
though they are deferred to the second approximation for finite shapes
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because, as usual, flow disturbances are weaker in three dimensions than
two. (For semi-infinite shapes see Exercise 8.2.) Thus Whitehead (1889)
failed in his attempt to improve upon Stokes’ approximation for the
sphere by iteration. The full Navier-Stokes equations give (Goldstein,

1938, p. 115):

| é ¢ Po | s
& DY = ,7;;@(1#95 — g 4 2cot O, — 2 7;) D% (8.92)
where
c? sinf ¢ ;1 ¢
2 — — | —_—
D= or* ' rr B 'sin B 50)

(8.9b)

Substituting the first approximation (8.5) into the convective terms on
the right-hand side of (8.9a) that were neglected by Stokes yields the
iteration equation

¢ sinbe 1 e 9 2 3 1y
[;_ L. 4)] Y= R[Sy — S+ —)sinbcost  (8.10)

cr? r> cf 'sin @ cf

2\ particular integral that satisfies the surface conditions (8.3a) is easily

found to be
R{2r2—3r—1 —%——1—) sin® 0 cos 6 (8.11)

¥

Bl

However, the velocity does not behave properly at infinitv, and no
complementary function can be added to correct it. In the next approxi-
mation the velocity would become infinite at infinity, as in the first
approximation (8.8) for the circular cylinder.

The nonexistence of a second approximation to Stokes’ solution for
unbounded uniform flow past a three-dimensional body is known as
Whitehead’s paradox. Whitchead himself regarded it as an indication
that discontinuitics must arise in the flow field associated with the
formation of a dead-water wake. However, this explanation too is now
known to be incorrect.

8.4. The Oseen Approximation

Just as d’Alembert’s paradox was resolved by Prandtl’s discovery that
flow at high Reynolds number is a singular perturbation problem, so
the paradoxes of Stokes and Whitehead were shown by Oseen to arise
from the singular naturc of flow at low Reynolds number. Whereas the
region of nonuniformity is a thin layer near the surface of the body at
high Reynolds number, it is the neighborhood of the point at infinity for
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low Reynolds number. "The source of the difhiculty can be undertood by
examining the relative magnitude of the terms neglected in the Stokes
approximation.

Far from the body the nonlinear convective terms are seen from the
right-hand side of (8.10) to be of order R 2. A tvpical viscous term—the
cross-product in the left-hand side of (8.10)—1s, from (8.5),

2 psinf e 1€ I 6, 1
< [JL A ¢ )]z/, =5 ) sintd = O( -] (8.12)

Gt LT 0 \sinfcd
Thus the ratio of terms neglected to those retained 1s

COMVECUNE  O(Rr)  as > (8.13)

viscous

Although this ratio is small near the bodyv when R 1s small, it becomes
arbitrarily large at sufliciently great distances, no matter how small R
may be. Thus the Stokes approximation becomes invalid where Rr1s of
order unity. This occurs at distances of the order of v [, meaning that
the viscous length is then the significant reference dimension. The same
objection applies «a fortiori to plane flow, where the incomplete Stokes
approximation (8.8) for the circle suggests the estimate
convective

—————— .= O(CRr logr) as 1 w0 (8.14)

viscous

These nonuniformities are the source of the singular behavior of the
Stokes approximation. In three-dimensional flow the difficulty tends to
be concealed because the first approximation is sufficiently well behaved;
in the region of nonuniformity where Rr == O(1) the velocity has already
effectively attained its free-stream value, so that it is possible to impose
the upstream boundary condition. This is an exceptional circumstance,
which arose previously in the inner solution for a round-nosed airfoil
(cf. Section 5.6).

This explanation of the difficulties encountered by Stokes and
Whitehead was given by Oseen (1910), who prescribed a cure at the
same time. Rather than neglect the convective terms altogether, he
approximates them by their linearized forms valid far from the body,
where the difficulty arises. For example, in the x-momentum equation
in Cartesian coordinates

uu, -+ v, + wu, -+

_i = V(ul’l‘ -\i u]/]/ “\ uZZ) (8'15)
P

Stokes neglects the first three terms altogether, but Oseen approximates
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them by u, . In plane flow the dimensionless equation (7.2a) for the
stream function then becomes

{V'—’ ) Rﬁ:»\i)\—gl’// -0 (8.16)

T'his constitutes an ad hoc uniformization, of a sort to be discussed
turther in Section 10.2. The general principle s to identify those terms
whose neglect in the straightforward perturbation solution leads to non-
uniformity, and to retain them atter simphfving them insofar as possible
in the region of nonuniformity. If the resulting equations can be solved,
the result 1s a uniformly valid composite approximation, of the sort
discussed 1n Section 5.4.

Thus Oscen’s equations provide a uniformly valid first approximation
tfor cither plane or three-dimensional flow at low Revnolds number. In
principle, one could refine the solution by successive approximations,
and the result would presumably preserve its uniformity at every stage.
In practice, however, although the Oseen equations are linear, their
solution 15 sufficiently complex that no second approximations are
known. It 1s simpler to decompose the composite expansion into its
constituent inner and outer expansions, which mav subscquently be
recombined. This process will be carried out in the following sections.

The Oseen equations possess a second, essentially different, inter-
pretation. At an arbitrary Revnolds number theyv describe viscous flow
at such great distances from a tinite body that the velocity has nearly
returned to its free-stream value. From this small-disturbance point of
view, the Oscen approximation has been used to study the wake far
behind a body (Iixercises 8.1 and 8.3). In such applications,  in (8.16)
ordinarily represents a perturbation rather than the full stream function,
the distinction atfecting onlyv the form of the boundary conditions. This
sccond interpretation of the Oseen approximation of course remains
valid at low Revnolds numbers, and will be used in what follows.

"I'he solution of the Oseen equations was given for the sphere by Oseen
himself (1910) as

1

2 Uy
= {27 — 7) sin® 8 -

3
4 2

1 ,

o8 ) LR =c0s0) ;
ﬁ(l —eosB)[1 - e i RriL-rostn] (8.17)
I'he solution for the circular cvlinder was given by Lamb (1911) in terms
of Cartesian velocity components. For example, the component normal
to the free stream is

|

1 N —

log R) — 5 —

(— [log Rr = eiRr (‘()“"U]\-‘)(;}ZRI‘)]:

cy

xilv

(8.18)
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Herc y == 0.5772 ... is Euler’s constant, and K, 1s the Bessel function.

In both these solutions the surface conditions were satisfied only
approximately in a manner appropriate to the underlying assumption
that the Reynolds number is small. We shall reconstruct these results
later. Solutions for arbitrary Revnolds number were carried out by
Goldstein (1929) and T'omotika and \oi (1950). These more complicated
results are of limited value because, contrary to Oscen’s own views, the
approximation is qualitativelv as well as quantitatively invalid at high
Revnolds number. For example, the Oscen approximation gives boundary
layers whose thickness is of order R ! rather than R !2 asin Prandtl’s
correct theory. This discrepancy may be understood physically as arising
from the fact that in Oseen’s approximation the vorticity generated at the
surface by shear is convected through rather than along the surface. The
detailed flow patterns calculated by Tomotika and Aoi would be of
some interest had not Yamada (1954) pointed out that numerical inac-
curacy invalidates their qualitative nature even at low Revnolds number.
For example, T'omotika and Aoi predict the standing eddies of Fig. 8.2b
at arbitrarily low Reynolds number, whereas Yamada shows that they
first appear behind the circular cylinder at R — 1.51 in the Oseen
approximation.

8.5. Second Approximation Far from Sphere

We now improve Stokes’ solution for the sphere by applyving the
method of matched asymptotic expansion. Our analysis follows the
spirit of Kaplun and Lagerstrom (1957), but more nearly the notation
of Proudman and Pearson (1957).

Let Stokes’s approximation (8.5) be the leading term in an asymptotic
expansion for small Reyvnolds number, which we call the Stokes expan-
sion. We have seen that this series is invalid far from the body where »
is of order R 1. We therefore introduce an appropriate contracted radial
coordinate p by setting

p = Rr (8.19)

and envision a second asymptotic expansion valid in that distant region.
We call it the Oseen expansion, because the flow far from the body is a
small perturbation of the uniform stream. According to the convention
adopted in Section 5.9, the Qseen cxpansion is the outer, and the Stokes
expansion the inner expansion. We choose our notation accordingly
except for the radial variable where, because R is not available, we use p
for the outer and # for the inner variable.

We could, as in the last chapter, write down the two expansions with
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their asymptotic sequences left unspecified. However, we prefer to show
how matching automatically determines the form of cach term in
succession when, as in this problem, the matching proceeds according
to the standard order (Section 5.9).

Writing the Stokes solution (8.5) in terms of the Oseen variable (8.19)
and expanding for small R gives as its 2-term Oseen expansion:
1

=P sin? 4 (8.20)

AW

1 .
2-Oseen (1-Stokes) ¢ = ;12 ﬁp"’ sin?f -

where the first term is the uniform stream. In order to match this, the
Oseen expansion must have the form

11

‘/J\Eﬁp

Zsin* 6 + [17 by(p, 0) = -+ as R—0 withpfixed (8.21)

Substituting into the full equation (8.9) vields for i, the classical line-
arized Oseen equation (8.16) in the form

) ¢ sinf ¢\,
(&* — cos ¥ i 60,)“’/ o =0 (8.22a)
where
geo. 0 _sinf 1 C_) (8.22b)
Tt T B'sing b ’
Setting
Ly = ey - evcorny, (823)
reduces Eq. (8.22) to
(7% — 1)y — (8.24)
Seeking as before a solution of the form ¢, = sin? 4 f(p) gives
1" 2 1 o
T 29
The solution that vanishes at infinity is
: 2
— (1 = Z)ete (8.26)
feall = =)

and any other solution of (8.24) having the proper symmetry is more
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singular at the origin, and can therefore be rejected as unmatchable by
the principle of minimum singularity (Section 5.6).
Thus the original equation for (8.22) for s, 1s reduced to

Gy = o1 + i)efsmfcosw sin? 6 (8.27)
' P

A particular integral is
Py = —2¢y(1 = cos B)[1 — emipti-cos®)] (8.28)

where the first term is a potential source at the origin, which has been
added to cancel the sink in the second term, and so assure zero flux
through any surface enclosing the body. Any other complementary
function that possesses this property, gives no velocity at infinity, and
has the proper symmetry will be more singular at the origin and hence
unmatchable.

T'his is a fundamental solution of the Oseen equation, which describes
the disturbance field produced at great distances by any finite three-
dimensional nonlifting body. The constant ¢, depends upon certain
details of the flow near the body. We find it by applving the asymptotic
matching principle (5.24). Writing the Oseen expansion (8.21) in Stokes
variables and expanding for small R vields

1-Stokes (2-Oseen) p == S7% sin? 6 — cyr sin® 6 (8.29)

This matches (8.20) if ¢, = %.
We have thus found two terms of the Oseen expansion (8.21). When
rewritten in Stokes variables this becomes

1
7 U

o~ %"” sin® 6 — - cos P)[1 — e iRri-cosh]

(NSRS

as R—0 with Rr fixed (8.30)

We can construct a uniformly valid composite expansion by combining
this with the Stokes approximation (8.5) using the rule (5.32) for additive
composition. The result gives a uniform approximation to the perturba-
tion field. It is found to be just the solution (8.17) of the Oseen equations
given by Oseen himself. This confirms the statement in Section 8.4 that
his linearized equations yield a uniform first approximation. Near the
body the last term in (8.17) reduces to the stokeslet of the Stokes approxi-
mation; it may by analogy be called an “‘oseenlet.”
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8.6. Second Approximation near Sphere

We proceed to the second term in the Stokes expansion. The 2-term
Stokes expansion of the Oseen expansion (8.21) is found to be

2-Stokes (2-Oseen) ¢ = Z%(21/2 — 3r)sin? 0 -+ %er(l —cos f)sin2 6 (8.31)

In order to match this, the Stokes expansion must have the form
1, Ly ooy ‘
b~ 21(2;»— — 3+ 7) sin2 0 -+ RW,(r, 6) = - (8.32)

The cquation for ¥, is evidently Whitehead’s (8.10) without the factor R.
His particular integral (8.11) remains valid, and the original Stokes
approximation (8.5) provides the only complementary function with the
proper symmetry that is no more singular at infinity. Thus we set
) Ty, 3. 1 Ly
Y, = CZ(‘ZI“ —3r —- 7) sin?f — —33(21'3 el Bt 72—) sin® 6 cos 6

- (8.33)
The constant C, is found by matching. Carrying out the Oseen expansion
of (8.33) yields

BLRNIY.

2-Oseen (2-Stokes) ¢ = ;_

1 , 3, 3 .
— 20w — St cost o) sine (8.34)
and this matches (8.31) if C, = 3 32.

Thus we have found two terms of the Stokes expansion for the stream
function in the vicinity of the sphere:

1 waalie 3, L3 B
d~ = 1)sin 0[(1 LER2+ )RR+ ) Lose] (8.35)
This vanishes not only on the sphere and along the axis of symmetry,
but also along the curve
g
L) (8.36)

208 6 ==
o8 28 1 -1

81
5 &
T'his is the approximate description of the boundary of the standing
eddy. It is plotted in Fig. 8.3. The eddy appears only at Reynolds
numbers so large that one would not have expected the Stokes expansion
to have any validity. Nevertheless, the lower half of Fig. 8.3 shows
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striking agreement with the experimental observations of Taneda (1956)
at R = 36.6. The downstream end of the eddy lies at

r,=1(V1 F3R- 1) (8.37)

Therefore the eddy first appears in the flow field at R — §. Despite its
magnitude, this agrees well with the value of 12 measured by Taneda
and the value of 8.5 calculated numerically by Jenson (1959) using the
full Navier-Stokes equations. Indeed, Fig. 8.4 shows that good agreement

60

Experiment,
Taoneda (1956)
40 \ ~2-term
7 Stokes
Ua Numerical, )
R Jenson (/1959) expansion
'Y
20
O,
0
/ 2 3 4

v ™
i 5%

Fig. 8.4. Length of eddy behind sphere.

persists out to R -= 60, which is about the limit for observation of
steady flow. These remarkable results call for corroboration through
examination of the effect of further terms in the Stokes expansion.

Higher approximations can be found by continuing the preceding
analysis. Proudman and Pearson (1957) have carried it far enough to
show that the next Stokes approximation contains a term in R2 log R
as well as R? and that logarithms are thereby introduced also into the
Oseen expansion beginning with R3 log R. They have calculated only
the term in R? log R in the Stokes expansion. This provides the drag
formula (1.4) of Chapter 1.

According to these results, the Reynolds number at which the eddy
first appears is a solution of the transcendental equation

L, 9 ., .
I —gR R lg R+ O(R) =0 (8.38)
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Unfortunately, this has no real root if three terms are retained.
The logarithmic term limits the Stokes expansion to values of R small
compared with 1. Until some method is found of enlarging the range of
applicability of such a series (cf. Section 10.7), we cannot say whether
the striking predictions of the second Stokes approximation are more
than coincidence.

Because of symmetry, the second term in square brackets in (8.35)
contributes nothing to the drag, which according to the first term is then
(I — 3R) times the Stokes value. But the second term is the particular
integral of Whitchead for the nonlinear terms. For that reason, the
Oscen approximation, which neglects the nonlinear terms near the body,
nevertheless gives the drag correct to second order at least for symmetric
shapes (Chester, [962).

8.7. Higher Approximations for Circle

Stokes’ paradox for plane flow is more striking than Whitchead’s for
three dimensions. Its resolution by the method of matched asymptotic
expansions is correspondingly more dramatic, despite the practical
shortcoming that the solution cannot be carried to nearly as great
accuracy. We treat the typical example of the circular cylinder, using
a synthesis of the work of Kaplun (1957) and of Proudman and Pearson
(1957).

The analysis largely parallels that for the sphere, but interesting
differences appear. In particular, the matching is marginal, and the
asymptotic sequence correspondingly slow. It was for this problem that
Kaplun and Lagerstrom (1957) devised their sophisticated apparatus of
intermediate limits and expansions, and the intermediate matching
principle (Section 5.8). However, we shall see that the asymptotic
matching principle (5.24) is entirely adequate, although the simple limit
matching principle (5.22) does not hold.

We reconsider the solution (8.8) of the biharmonic equation as the
first term in a Stokes expansion:

ho~ AI(R)(T log r — %r . ,l) }1—) sin as R—0 withr fixed (8.39)
The multiplier 4, must be allowed to depend upon Reynolds number
because our asymptotic sequence is unspecified. Although this approxi-
mation cannot satisfy the condition (8.3b) of a uniform stream at infinity,
it can be matched to the uniform stream, regarded as the first term of an
Oseen expansion (Lagerstrom and Cole, 1955, Section 6.3). Again the
Oseen variable is taken as p = Rr so that lengths are referred to the
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viscous dimension v { rather than the radius a. Then the Oseen expan-
sion begins with the free stream in the form

lp\?le—psin@v—i"' a8 R—»0 with p=0 fixed  (8.40)

Writing the Stokes approximation (8.39) in Oseen variables and expand-
Ing gives
4(R .
1-Oscen (1-Stokes) s = ij%—) log ﬁl—p sin 8 (8.41)
'I'his matches (8.40) if 4,(R) = (log | R)~!, or more generally if 4,(R) —
(log | R — k) ',wherc kis any constant; and we shall later exploit this
freedom.

I'he overlap is so slight in this case that in order to match we have had
to accept a relative error of order 4, , which is enormous compared with
the error of order R in the Stokes approximation for the sphere. We are
thereby committed to a slow expansion in powers of 4, of which an
infinite number of terms correspond to only the first term for the sphere.

Expanding the Stokes approximation (8.39) further in Oseen variables
vields

2-Oseen (1-Stokes) i == 71?—[1 — A(R) (logp — k — 3)jpsinf  (8.42)
This requires, in order to match, that the Oseen expansion (8.40)
continue as

§~ plosin 6 — 4,(Ryhp, 6) — -] (8.43)

Substituting this into the full equation (7.2a) shows, of course, that ¢,
satisfies the linearized Oseen equation (8.16). 'I'he appropriate solution
can be found by proceeding as for the sphere (Proudman and Pearson,
1957). However, the stream function is disadvantageous here because it
can be written only as an infinite series, whereas the velocity components
are closed expressions.

We evidently seek the plane counterpart of (8.28), the oseenlet repre-
senting the disturbances produced by an infinitesimal drag at the origin.
This fundamental solution, due to Oseen (Rosenhead, 1963, p. 183),
gives as Cartesian velocity components

= (‘/JZ‘ — ) L4 o plpcost i (L _ pipcost i (L / ;
Uy = f(P sin 0) - zrl'f(p oS 0) [logp e f AO(?P)] e:f I\O(ZP)\ (844‘1)
= 58) = 20250 smpy o8 + e Kol (8.44b)

~ 6(pcosB) -

8.7. Higher Approximations for Circle 163

The term in log p is again a potential source at the origin that cancels the
sink in the term involving the Bessel function K. For small p thesc are

approximately
ey 4 . .
fosnt) ™ e|log . y - COS 8,) O(p log p) (8.452)
_ Gy ¢y sin B cos B — Ofp lo (8.45b)
(peosf) TS plogp) '

where Euler’s constant y — 0.5772 ..., and integrating gives
4 . R ;
gy ~ - oflog = 1 — ylpsind — Op* log p) (8.46)
P

Using this, we find that the Oseen expansion (8.43) behaves necar the body
like

. 1 . p .
1-Stokes (2-Oseen) ¢ = n [p sin - ¢,4,(R)(log i7" l)p sin 0] (8.47)

‘Then matching with (8.42) according to the asymptotic matching prin-
ciple gives ¢, — 1.

The second term in the Stokes expansion—and indeed the term of any
finite order—is cvidently again a solution of the biharmonic equation,
because the nonlinear terms of order R are transcendentally small on
the scale of powers of 4,(R). Matching, or applving the principle of
minimum singularity, shows that cach is simply a multiple of the first
approximation (8.8). It is convenient, following Kaplun (1957), to make
the sccond term vanish by choosing the constant & so that (8.42) and
(8.47) match perfectly: & — log 4 — v — 1. 'Then the Stokes expansion
assumes the form

< 1 11

b~ (Al — 2 (1”41”)("’ log r — 2-;; . 37 ) sin 6 (8.48a)
) n=3
where
4 B R 3.703 1
Al ES (IOg IT — Y - 2) == (log 'ﬁ*‘ (8A48b)

Forming a uniformly valid two-term composite expansion by additive
composition of (8.43) and (8.48) reproduces L.amb’s solution (8.18) of the
linearized Oseen equation.

Kaplun (1957) has carried the process through one more cycle to find
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the coecflicient of the third term in the Stokes expansion (8.48) as
a; ~ —0.87. Ilence he finds for the drag cocfficient

~ —[4y(R) = 0.8743(R) - O(4,Y)] (8.49)

The first term is the classical result of Lamb (1911, 1932). Comparison
with the measurements of I'ritton (1959) in Fig. 8.5 shows the limited
utility of this result. Also shown for comparison is Tomotika and Aoi’s
(1950) full numerical solution of the linearized Oseen equation (8.16).
Irom a formal mathematical point of view, we should exhaust all the
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Fig. 8.5. Drag of circular cyvlinder at low Reynolds number.
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powers of 4, in (8.48) before considering nonlinear corrections to the
Stokes equation, which are relatively of the transcendentally small order
R. In practice, however, such terms are significant. 'I'he first such term
(Exercise 8.5) is of order R, which is greater than 4,*for R > 0.00008.
Proudman and Pearson (1957) discuss briefly how these terms could be
calculated. They would be needed to show any asymmetry in the flow
pattern, such as the emergence of standing eddies.

EXERCISES

8.1. Oseen solution for flat plate and plane wake. In parabolic coordinates
(7.51) the Navier-Stokes equations give for the stream function in plane flow:

¢t et ‘ ¢ 01 e+, —0
R R e
Derive the corresponding linearized equation (8.16) of Oseen. Find by separa-
tion of variables the Oseen solution for a semi-infinite flat plate in a uniform
stream, and for the flow far from a finite nonlifting body. Show that in the
first case the boundary-layer approximation in parabolic coordinates is the full
Oscen solution. Compare the skin friction with the known value for the Navier-
Stokes cquations far downstream. In the second case express the constant
multipliers for both the term representing the wake and that for potential
flow in terms of the drag of the body. Relate the solution to (8.44). [The
first case was originally treated in a more complicated way by Lewis and

Carrier (1949); for the second, see Imai (1951) and Chang (1961).]

8.2. Viscous flow past slender paraboloid. In paraboloidal coordinates (cf.
Exercise 8.1), the Navier-Stokes equations give for axisymmetric flow

| >
wl >

|

lN

2 e o Ay 2 —
[V(gh*\n)l) *5(¢'557‘/})} y e §-) 2 ("7%_@‘5)]0‘;’*0

where

Find the Stokes solution for the paraboloid of revolution. Show that it can be
matched to the uniform stream in the same marginal way as for the circular
cylinder. Calculate the second term in the Oseen expansion. Describe how the
process would continue. What light does it shed on the accuracy of the known
Oseen approximation for the elliptic paraboloid (Wilkinson, 1955)? How does
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the ratio of skin friction to pressure drag in the Oseen approximation compare
with 1: 1 for the circle and 2 : 1 for the sphere (Tomotika and Aoi, 1950)?

8.3. Iake of axisymmetric body. Calculate the leading term in the expansion
of the stream function far from a finite body of revolution in viscous flow,
identifying the constants with the drag of the body as in Exercise §.1.

8.4, [I'iscous flow past thin parabola. Show that the Stokes approximation for
a parabolic cylinder is unmatchable in any way with a untform stream. Show
that 1t appears to match the Oscen approximation for a flat plate to first order,
or that for a parabola to second order; but that continuing the solution by the
method of matched asymptotic expansions indicates that neither of those is
the correct leading term. What is the true Oscen limit? (See Lagerstrom and

Cole, 1955, p. 877.)

8.5. Transcendentally small terms for circle. Supposing that (8.48a) 1s known
to any desired order, find the form of the “next” term, aside from undetermined
constants, showing that it is of order R. With which term of the Oseen
expansion would it match?

8.6. Near success of strained coordinates. Show that the two-term Stokes
expansion (8.35) could be found using the method of strained coordinates,
and straining only the radius, if one knew that the straining should vanish
along the downstream axis of symmetry.

Chapter I X

SOME INVISCID SINGULAR
PERTURBATION PROBLEMS

9.1. Introduction

As discussed in Chapters V and VI, the method of matched asymptotic
expansions was invented to treat singular perturbation problems in
viscous flow theory, whereas Lighthill’s technique of strained coordinates
was developed for problems in wave propagation. [t is still unclear whether
Lighthill’s method can be generalized to handle elliptic and parabolic as
well as hyperbolic equations. On the other hand, the method of matched
asymptotic expansions has been successfully applied to a variety of invis-
cid flow problems. Indeed, we introduced it in Chapter IV for inviscid
thin-airfoil theory, and applied it in Section 6.7 to the hyperbolic equa-
tions of supersonic flow.

The present chapter is devoted to three more examples of inviscid
flows involving nonuniformities. These cover the gamut of speeds from
subsonic through transonic to hypersonic. The first is the classical
lifting-line theory of Prandtl, which is seen in a fresh light when its
singular nature is revealed. The second is slightly supersonic flow past a
slender cone, where the linearized solution must be corrected in order to
find the position of the shock wave. The third is the entropy layer pro-
duced by slightly blunting a wedge in hypersonic flow. We treat the first
and third by the method of matched asymptotic expansions, and the
second by strained coordinates; but it will be useful to ask whether the
alternative method could have been chosen in each case.

9.2. Lifting Wing of High Aspect Ratio

Prediction of the flow field produced by a finite lifting wing at subsonic
speeds is one of the most intractable problems in aerodynamic theory.
Viscosity must be neglected, except insofar as it provides the Kutta-
Joukowski condition at the trailing edge; and it is almost essential to
linearize, so that the effects of thickness, camber, and angle of attack can

167




168 IX. Some Inviscid Singular Perturbation Problems

be treated separately. Then the subsonic problem is equivalent to the
incompressible one according to the Géthert rule (Jones and Cohen,
1960, p. 49). However, even the remaining problem of inviscid incom-
pressible flow past a wing of zero thickness and infinitesimal inclination
to the stream is complicated. Its strict treatment by lifting-surface
theory requires solution of a singular integral equation involving double
integrals.

For a wing of high aspect ratio, Prandtl’s lifting-line theory reduces
the problem to the solution of a singular integral equation involving
only one integration. It is not clear, however, how one could refine
Prandtl’s analysis to obtain better approximations. For example, the
well-known expression for the lift-curve slope of a flat elliptic wing of
aspect ratio A

dC‘L 277
dx 15 (24) (9-12)
can, to the accuracy of the approximation, be written as
ac, 2
Lo ey = 2 (9.1b)

However, no extension of Prandtl’s method will yield the next term,
which we shall see is not of order 472

Friedrichs (1953) has pointed out that this is a singular perturbation
problem. There are two characteristic dimensions, the span being the
primary reference length and the chord the secondary one. Their ratio
tends to infinity as the aspect ratio increases. Hence according to our
physical criterion (Section 5.3) it is possible for this parameter-perturba-
tion problem to be singular. T'his possibility is rcalized for the lifting wing
(and also for the nonlifting one, see Exercise 9.1). The nonuniformity
can be treated by applying the method of matched asymptotic expansions.
"The second approximation will be found to be equivalent to Prandtl’s
lifting-line theory. However, application of the matching principle is
seen to eliminate the occurence of integral equations, which are reduced
to quadratures, so that the analysis is substantially simplified. Further-
more, continuing the process makes possible the calculation of higher
approximations.

Consider for simplicity a flat wing of zero thickness, whose planform
is symmetric in the streamwise as well as the spanwise direction (Fig.
9.1a). Take the free-stream speed and the semispan as units of velocity
and length. Transfer of the tangency condition is avoided by letting the
wing lie in the plane y = 0, to which the free stream is inclined at
angle «. Then the planform may be described by x = —A71A(z), where
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A is the aspect ratio, and the half-chord /A(z) is an analytic function of
order unity. At first we assume that 4 vanishes as smoothly as necessary
atz — -1, in order to avoid additional nonuniformities at the tips. The
effects of relaxing this restriction will be faced later.

{a) (b) (c)

Fig. 9.1. Inner and outer limits for flat lifting wing. (a) Full problem. (b) Inner
limit. (¢) Outer limit.

The full problem for the dimensionless velocity potential ¢ is

equation: Vip = —b,, —b.. =0 (9.2a)
tangency: é,=0 at y =0, x < A7(z) (9.2b)
upstream: G ~ X COs a - ysin (9.2¢)
Kutta: ¢, <o at y =0, r = d7(2) (9.2d)

"The version of the Kutta condition given here is a simple way of assuring
the physical requirement that the velocity be finite at the t}ailing edge.

[t is evident physically that as the aspect ratio A becomes infinite the
flow at any spanwise station approaches plane flow past a flat plate
having the local chord (Fig. 9.1b). This can be shown formally by intro-
ducing magnified inner variables that are of order unity near the wing,
setting

¢ = AID(X] Y, 3) (9.3a)
where

X == Ax (9.3b)

Y = Ay (9.3¢)

These are coordinates referred not to the semispan but to a typical
chord, which is the relevant scale for lengths in sections normal to the
span.
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This transforms the full problem (9.2) to

Dy - Dy - A0, = (9.4a)

O, -0 at ¥ =0, |X|<hz) (9.4b)

@& ~ Acosa + Ysinax  upstream (9.4¢)

O, w at Y =0, X = hz) (9.4d)
The solution of this problem when A4 = o is

@, == X cos x — Im{v/(X — 1')")42*:772(27

— h(z) log[X — iV - V(X — V)R = R(x)]}sina (9.3)
which can be put into real form using elliptic coordinates. As it clearly
should be, this is the solution for plane flow past a flat plate of chord
2A(z) at angle v (Fig. 9.1b). Thus to a first approximation the spanwise
coordinate s plays only the role of a parameter. For present purposes
we require from this solution only the circulation I, which is 277 times
the coefficient of log(x* - v3)! 2 in ¢:

I~T, = 2mad'(z) (9.6)

The relative error in this first approximation near the wing would,
from (9.4a), appear to be of order 4 2 However, one cannot simply
iterate to find the second approximation. Calculating @__ from (9.5) gives
an cxpression that behaves like tan 1Y X far from the airfoil section,
corresponding to the circulatory flow. A particular integral of the itera-
tion cquation therefore behaves like (X = 172), which would overwhelm
the uniform stream at distances of the order of - in the scale of the inner
variables. 'This divergence, analogous to that encountered by Whitchead
in attempting to improve Stokes flow past a sphere (Section 8.3), 1s
indicative of a singular perturbation problem. We treat it in the following
section by constructing a complementary outer expansion. Matching
will be seen to force a term of relative order A !into the inner expansion,
the situation being analogous to that in boundary-layer theory
(Section 7.3).

9.3. Lifting-Line Theory by Matched Asymptotic Expansions

In the outer limit (I'ig. 9.1¢) the wing shrinks to a line of singularities,
which must be solutions of (9.2a). Vortices are the first possibility that
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has the proper svmmetrv in v. Higher multipoles can be disregarded at
this stage, because they will prove to be unmatchable according to the
principle of minimum singularity. 'T'he vortex strength I” will evidently
vanish as 4 — =c, and may therefore be tentatively expanded as

Iz A) ~ A 7p(e) A yle) + o ©0.7)

The bound vortices in the wing must be continued as free vortices
tollowing the streamlines downstrcam to infinity. Henceforth it is a
considerable simplification to assume that the angle of attack is small, so
that only lincar terms in x need be retained. Then the trailing vortices
may be taken parallel with the x-axis (Fig. 9.1¢). The potential of such
an assemblage of vortices is readily calculated using the Biot-Savart law.
Thus the outer expansion is found to have the form

1 T () N
b~ -x) o — A1 —-= 02— ] - dl
W g ‘If e G C)z[ Va? - g2 - (2 — 5)2]

i
—_

as A4 > o withux, v, 2 fixed (9.8)

At this point we make a significant departure from the classical lifting-
line theory of Prandtl, and so achieve an essential simplification. Prandtl
finds the distribution of circulation y,(z) by solving an integral equation.
However, to the order of accuracy of his theory the circulation may be
found directly by matching with the inner solution. This can be done
formally, but the result is obvious from the fact that all curves enclosing
the same vortex lines have the same circulation (Fig. 9.1). In the inner
limit the circulation is given by (9.6). Because this is independent of the
size of the circuit, matching with (9.7) gives

yo(2) = 2mah(z) 9.9)

I'hat is, to first order the bound vorticity is the circulation about a flat
plate of the local chord length in plane flow at the actual angle of attack.
In Prandtl’s theory the circulation corresponds to a reduced “‘effective”
angle of attack, but the difference is of higher order. Thus the two-term
outer expansion (9.8) is found as

I (S .
.’ Y [ [1 i \//A‘z -+ yz i (z o g)3] C
(9.10a)

We now return to the inner problem and seek a second approximation.
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In carrying out the inner expansion of (9.10a), meaningless divergent
integrals are avoided by first integrating by parts to give

I e ]
AIVEEREEC D o)
X

&
< 5

— tan

Then introducing inner variables (9.3) and expanding for large A gives
as the two-term inner expansion of the two-term outer expansion for ¢:

. ¥
2-inner (2-outer) ¢ = A ’1[X A+ ol - ah(s) tan ! ’?{]

~1 ! 4
_ %3;172)’# LAUKIS 9.11)

Joox—1

The integral must be interpreted as the Cauchy principa] v‘alue. It is,
remarkably enough, the integral that was cncour'xtered' in Chaptcr N
(4.10) in treating thin symmetrical airfoils, and \\'hlch arises als‘o in other
branches of fluid mechanics, including supersonic slender-body th.cor_\'.

The first term in (9.11) has already been matched with t.he inner
solution (9.5). The second term demands a correction of rcilatn'e order
A1, so that the inner solution (9.3a) must have the expansion

b~ AP (X, 1, 2) — A2D(N, ¥, 2) - - as A —> >
with X Y, 2 fixed (9.12)

Substituting into the full equation (9.2a) shows that @, as well as @
satisfies the two-dimensional Laplace equation in X and Y. Hence _(9.1 1)
shows that @, is simply the result of reducing the angle of at'tack in the
local flat-plate solution from its geometric value o to the effective value

wuf2) = o1l - 4 {1 %({)"?] (9.13)

This is a familiar result from lifting-line theory. The trailing-vortex
system induces downwash velocities in the vicinity of the wing that are
constant across the chord at each spanwise station, and so act to decrease
the apparent angle of attack of that section. Holw.cvcr, we have her¢
reduced the calculation to quadratures by recognizing that for large A
the downwash angle is small compared with the geometric angle x,
whereas classical lifting—line theory leads to an integral equation because
that fact is not exploited. Our result can be extracted as the second step
in solving Prandtl’s integral equation by iteration.

9.4. Summary of Third Approximation 173

From the inner solution we have used only the relation (9.6) between
the circulation and angle of attack, which is equivalent to the two-
dimensional lift-curve slope. Prandt] has suggested replacing the theore-
tical lift-curve slope by the experimental value, which would account for
the cffects of thickness and viscosity. This is a practical example of the
fact, mentioned in Section 5.4, that the method of matched asymptotic
expansions can be applied even when the inner problem is “impossible,”
and soluble only numerically or experimentally,

9.4. Summary of Third Approximation

'The preceding analysis has been continued through one more cycle to
obtain the third approximation (Van Dyke, 1964b). Here we outline the
teatures of interest.

Carrying out the 3-term outer expansion of the 2-term inner expansion
provides, by the previous physical argument, the correction y, to the
vortex strength (9.7). In addition, it shows the appearance at this stage of
the next higher singularity in the lifting line. We call this a dizvortex,
although it is a dipole with vertical axis, to emphasize its physical inter-
pretation as the x-derivative of a vortex, representing the first moment
of the distributed vorticity on the wing. Thus the 3-term outer expansion
is found to be (9.10), with 4 modified by the factor (9.13), plus

NSNS e 014
sty El MO e oW

The 3-term inner expansion of this result can be calculated after
further integration by parts. One is

surprised to find that the anticipated r
next term of order A% in the inner T
expansion (9.12) is preceded by one

|

of order A-3log 4. As usual (cf. Sec- \
tion 10.5), the logarithmic term is
much the easier of the two to calcu- \
late. It requires a further change in
the effective angle of attack (9.13), and
also straightening by the plate of v
streamline curvature induced near the Fig. 9.2. Streamline curvature induced
Wing b} the trailing vortex system near wing by trailing vortex system.
(Fig. 9.2).

The nonlogarithmic term involves these and other more complicated
local flows, all of which can be found by using complex variables. Then
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the coefficient of all terms in log (22 - ¥2)1/2 provides the distribution
of circulation or spanwise lift, which is found to be

Lo g ff' POAE 1 e 10g K 3007
1

Ry 4 3., . 4 4y,
4 i:l*-;p log 7 E)h 2 (3 log 5T E)hh

oyl Bl O,

dz J_, 3 — ¢
- } izg J'I hO[A(z) — h()])sgn (2 — ) log 1 2 — | dé: - e
2ds% )y ' (9.15)

Here I',. is the two-dimensional value (9.6), and =, is given by (9.13).
Then according to the Kutta-Joukowski law the lift-curve slope is

dcC
do

I'(z)
% (9.16)

= 2n J':) h(2)

9.5. Application to Elliptic Wing
An elliptic wing of aspect ratio A (Fig. 9.3) has the half-chord

h(z) = é V1I— 2 (9.17)

Fig. 9.3. Flat elliptic wing.
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The circulation is found from (9.15) as

r 2 4 logd3 -2 4 15 X )
L R R R Uy
log2 3222 ™
-3 — lo —— | - e 9.18
1 — =22 1 — 22 g\/l—zz]j ©-18)

Integrating this across the span according to (9.16) vields the lift-curve
slope quoted as (1.6) in Chapter 1. The first two terms constitute our
earlier modification (9.1b) of Prandtl’s result (9.1a).

Fortunately, this is one of the rare cases where the lifting-surface
solution has been calculated. Figure 9.4 shows that Prandtl’s solution

A=z ® —————
6 —
Prandt! s
2" approx. -
(9.1a) _ =T =
JI;/angrox. .- 0
4 .
dac, >
—_— Modified
da 3" approx.
wo2z7) ,” O 7
| v v - , 4
\ //// ,’/2"'appmx,
e \ 7
/\/O ’ (9.16)
/" Slender -wing O Krienes (1940)
/. theory lifting - surface
// 0 theory
0 ] | |
0 2 4 6 g
A

Fig. 9.4. Lift-curve slope of clliptic wing.

has the advantage of vanishing at 4 = 0, though with twice the correct
slope according to slender-wing theory. However, our expanded form
(9.1b) is actually the morc accurate above 4 = 4. Our third approxima-
tion is seen to diverge below A —= 3. Postponement of that catastrophe,
shown by the dash-dot curve in Fig. 9.4, is discussed later in Section

10.7.

See
Note
13



See
Note
13
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We have violated the restriction to cusped tips. Consequently, just
as in the application of thin-airfoil theory to round noses (Section 4.4)
or of boundary-layer theory to sharp leading edges (Chapter VII), the

result is not locally valid. We see that (9.18) breaks down when 1 |- = is
A% 1-z)
A%y vl

/

—_——— z —— — A%

Fig. 9.5. Limiting problem for vicinity of round tip.

of order A2, At any fixed number of radii from the tip of the planform
the flow fails to become plane no matter how great the aspect ratio.
Clearly yet another asymptotic expansion is required for that region.
The first term would represent flow past a flat semi-infinite plate of
parabolic planform (Fig. 9.5), and would be applicable to the tip of any
flat wing whose outline is an analytic curve. In this tip solution the
original coordinates would all be magnified by a factor A*.

Still other nonuniformities exist in this complicated problem. It is well
known that a vortex sheet tends to roll up, so that our outer solution is
not valid far downstream where x is of order A x. Again, airfoil sections
other than the flat plate would ordinarily be treated using thin-airfoil
theory for the inner problem, which would lead to the nonuniformities at
leading and trailing edges discussed in Chapter IV, and their more
complicated counterparts at tips. Nonuniformities would also arise at the
root juncture of a swept wing or other discontinuity in planform, at a
deflected aileron, and so on. The case of a smoothly swept wing of cres-
cent planform has been analyzed by Thurber (1961) using the method of
matched asymptotic expansions. He finds that a logarithmic term then
appears in the second approximation,

9.6. Slightly Supersonic Flow past a Slender Circular Cone

For a slender fusiform body in supersonic flow, the familiar linearized
theory (e.g., Ward, 1955) provides no information about the strength
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gf the bow shock wave. That can be found only by retaining some non-
lmea.r terms, and recognizing the singular nature of the perturbation
solutlgn. This problem has been treated by both the method of strained
coordu?ates (Lighthill, 1949b) and the method of matched asymptotic
expansions (Bulakh, 1961). We apply the former technique to avproblcm
so simple that we can carry the solution one step beyond previous results.
‘ \;Ve consider a slender circular cone of semivertex angle ¢ at zero
mc.ldence in a stream sufficiently supersonic that the flow is conical
(Fig. 9.6). If the flow is only slightly supersonic, the essential phenomena

|
!

M>|

Fig. 9.6. Slightly supersonic flow past slender cone.

are described by the transonic small-disturbance equation (Oswatitsch
and Berndt, 1950):

P
P (M= Dgee = (v + Dpug (9-19a)
Here ¢ is ‘the perturbation velocity potential, such that the velocity
vector is .L gr‘ad(x -+ ¢). In this approximation the tangency condition
can be. linearized and, because the body is smooth, transferred to
the axis (Section 3.8) as

lim rg, = e%x (9.19b)

The oblique shock wave relations provide two conditions to be imposed
at the unknown location of the bow wave:

=0 (9.19¢)

2 MEsinto— | a [ =tang
P ME

(9.19d)
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On the surface of the cone the pressure coeflicient is given by

C, = 2p, — & (9.20)

bg

This problem has been solved numerically by Oswatitsch and Sjodin
(1954). We instead procced analytically, seeking an asymptotic expansion
for small e. In tacitly assuming that the Mach number is fixed, we dis-
regard the transonic nature of the problem; and our solution will conse-
quently be valid only in the upper portion of the transonic regime.

A straightforward perturbation expansion leads to difhculties at the
free-stream Mach cone. The perturbation potential has a square-root
zero there in the first approximation, which through differentiation
introduces singularities into higher approximations. We accordingly
introduce a strained conical variable s by setting

%(f(ﬁ'» rye) ~ &fi(s) = elfols) — e5(s) — ehi(s) — (9.21a)

VA1 ;\ s — ery(s) + ebry(s) — o (9.21b)

No term of order ¢ appears in (9.21b), because we shall find that the
straining vanishes to that order. For the same reason, the description of
the shock wave is taken in the form

VIR Ttano ~ 1 = kgt — ke — - (9.22)

9.7. Second Approximation and Shock Position

When the L\pansion» (9 21) are substituted into the ditferential
equation (9.19a), terms in ¢* vield the conventional linearized equation

for fi:
(1 — f + ‘fl =0 (9.23)

The solution satisfying the tangency condition (9.19b) and the first
shock-wave condition (9.19¢) is

fuls) = —(sech=ts — /1 = 5?) (9.24)

The second shock-wave condition (9.19d) is automatically satisfied,
which is the reason that no term of order ¢ is required in (9.22).
Terms of order ¢* in the differential cquation now give for the second
approximation /
(1 - &) 1 —G sech™t s (9.254)
2 s V1 — s
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where
s oyl
G (9.25b)

Integrating and imposing the tangency condition and the first shock-wave
condition yields

fo(s) = 5G(sech ts — /1 — @ sechls — V1 D) (9.26)

This is the transonic small-disturbance form of the second-order solution
(Van Dyke, 1952), expressed in terms of a strained variable that is about
to be determined.

Terms of order ¢% in the differential equation now give for the third
approximation

(I _ 5-_))f// A‘}i“i,— _ G,_,l:SCCh 1 N o sech -1 s 1 |
3 s 1] — s V1= 241 =2
SR L U L
2 =epEl T T
1 - 3s?
- 33\/‘1 - 83_ Ty (927)

It is at this stage that insurmountable difficulties arise in the absence of
s‘training The first term on the right is singular like G2(1 — 52)~1/2 at
s = 1, which would lead to a similar singularity in the velocity. This
defect is removed by proper choice of the straining function r,(s).

The simplest ch01ce constant straining:

1y(s) = $G* (9.28a)

was successfully employed by Lighthill (1949b) to find the position of
the shock wave, which is as far as he carried the solution. However, this
eliminates the nonuniformity near the shock wave only to introduce
another on the axis, which would make it impossible to impose the
tangency condition there in the next approximation. This difficulty is
avoided by choosing instead the linear straining

ry(s) = $G2 (9.28b)

The second shock-wave condition can now be used to find the depar-
ture of the shock wave from the free-stream Mach cone. At the shock
wave, according to (9.21b), (9.22), and (9.28b)

s =1 4 e'lfky —rg(8)] £ o= 1+ eMhy — LG (9.29)
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and substituting into (9.19d) yields

ky (9.30)
The solution 1s 4
ky = 3G2 (9.31)

which 1s the transonic small-disturbance form of the result found by
Lighthill (1949b) and Bulakh (1961). This is the extent to which they
carried their solution, which applies to a slender cone of any cross
section. The following section covers new ground.

9.8. Third Approximation for Pressure on Cone

With the above straining, Eq. (9.27) for the third approximation
simplifies to

3 s - VIE—st 2V — ¢
1 s*(sech™! s)?
-5 57&_{] (9.32)

Integrating and imposing the tangency condition and first shock-wave
condition gives

fa(s) = 1,(13[(2 — log 2)V1 — s — (log 2 — 1) sech!s

! . d)(sech“l s.)i

V1 s

T
- g lt ) (9.33)

V1T s¥sech s — %(\\/1 — s -

LT g2

The integral appearing here has the properties

— ; ™ ,
T log —— dt ~ ylog?s — (l~2— + Llog? 2 — log 2)
— 4s2log s -~ O(s?) (9.34a)
~ (1 - #pRlog (1 — ) + O — ]
(9.34b)
Terms of order &% give the equation for the fourth approximation
which, with the right-hand approximated near s — [, becomes
O\ L1 f4/ . 3 Ky 1 1 >
2 S N 3l (= - »_ Yy - 2y ... .
(L— ey +2 (;[(4‘203)\/1432 Hog(1 —) ] (939)
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Singularities in the right-hand side and hence also in the fourth-order
velocity are avoided by choosing the next term in the straining as

rs) = — LG%[3 = /1 - 5% log(l — )] (9.36)

The factor s again serves to prevent the introduction of a nonuniformity
on the axis. At the shock wave these results give

s o= 1 LG - (ky - JGR)ES s (9.37)

Then substituting into the second shock-wave condition (9.19d) yields
— 1 3

ky = — 12G (9.38)

Expressing the results in terms of the original parameters, we find
that the shock wave lies at

\/T[TTI', ~1 — %[(l;i)iz]l - %[(;{[;il)‘?] L (9.39)
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Fig. 9.7. Pressure on slender cone in transonic flow.
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The surface pressure coefficient (9.20) can be written in accord with the
transonic similarity rule of Oswatitsch and Berndt (1950) as

c, o e
=t NLly + Deyr
+ i —dlE—r) o 0

As anticipated, these results are asymptotic expansions for large values
of the transonic similarity parameter (y -+ 1)e2/(M? — 1). The first
three approximations for surface pressure are compared in Fig. 9.7 with
the numerical solution of Oswatitsch and Sjédin.

9.9. Hypersonic Flow past Thin Blunted Wedge

It was pointed out in Section 5.3 that slight blunting leads to non-
uniformity downstream on a body in inviscid supersonic flow. Away from
the nose, the flow is nearly that for the sharp body almost everywhere. At
the surface, however, the entropy—Dbecause it is constant along stream-
lines—has the value for a normal rather than an oblique shock wave.

Fig. 9.8. Entropy layer on blunted wedge.

Certain other flow quantities are necessarily also different there. The
changes take place across the entropy layer (Fig. 9.8), whose thickness is,
for plane flow, of the order of the nose radius.

The effect of slight bluntness was first treated as a singular perturba-
tion problem by Guiraud (1958). He considered the direct problem,
where the body is given. The analysis is simpler for the inverse problem,

T A e S
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where the shock wave is prescribed and the body sought. This approach
was carried out for flow of a perfect gas at infinite Mach number by
Yakura (1962) using the method of matched asymptotic expansions. We
specialize his solution for a blunted wedge to the particular case when

Fig. 9.9. Notation for thin hyperbolic shock wave.

the wedge is thin. Although this simplifies the analysis, it has the remark-
able effect of splitting the entropy layer into two layers, so that we need
an outer, middle, and inner expansion.

Consider the flow behind a hyperbolic shock wave (Fig. 9.9). Let its
asymptotic slope ¢ be small. We take its nose radius to be &3, in order
that the first approximation be that for the sharp wedge. Thus we carry
out a parameter perturbation for small nose radius, whereas Yakura

carried out a coordinate perturbation for large x. The shock wave is

described by 22t g (9.41)

In an inverse problem the body is most conveniently found from the
vanishing of the stream function . We introduce it in the usual way for
compressible flow by setting

dp = pu dy — pv dx (9.42)

The conservation equations are

continuity: (pu), -+ (pv), =0 (9.43a)
x-momentum:  p(uu, + vu,) + p, =0 (9.43b)
y-momentum:  p(uv, + vv,) + p, = 0 (9.43¢)
entropy: u(plp?)e + o(plp), = O (9.43d)
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The last of these expresses the fact that entropy is constant along stream-
lines between shock waves, which is equivalent to conservation of
energy. It is useful to exploit this property by taking the stream function
as an independent variable, reversing the roles of y and ¢ by applying the
von Mises transformation of boundary-layer theory. Then the differen-
tial equations (9.43) become

streamline slope : g—{ = ;—) (9.44a)
continuity: % = f% (9.44b)
momentum normal to streamline: g—z + % =0 (9.44c¢)
Bernoulli integral: u* + o* ;EET% =1 (9.44d)

entropy integral: ;P; = f(¥) (9.44e)
Let the flow variables be made dimensionless by referring velocities
and density to their free-stream values U and p. , and pressure to
p.U?. This leaves the preceding equations unchanged. Then because

the slope of the shock wave is
b _ e (9.45)

dx — \/x2 — &

the Rankine-Hugoniot relations provide the initial conditions

2 X

P‘y—{—le(l+€2)x2——€2

_r+l

P—"ykl
2 @ r y—

u—1 — +182(1+e2)v2 82.\ at = eV/x® — ¢ (9.46)
Y LA

2 xVx% — g2

vgy+18(l+22)x2—£2

Ny /

Hence the entropy integral (9.44e) is evaluated at the shock wave as

p 2 gy—NI, P - gt ,
;4y+1(y+1) 82(1+62)¢"“’+66 (544
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9.10. Small-Disturbance Solution for Blunted Wedge

As the perturbation parameter ¢ vanishes, the above problem reduces
to the hypersonic small-disturbance problem for a sharp wedge (Hayes
and Probstein, 1959, p. 47). The initial conditions (9.46) suggest im-
proving upon that basic solution by expanding in powers of 2. We
therefore make the conventional expansion of hypersonic small-disturb-
ance theory (Hayes and Probstein, 1959, Chapter II), setting

u~ 1 - fuy(x, ) + uy(x, py) + -+ (9.47a)
v~ evy(¥, 1) + Bvy(x, ) + o (9.47b)
P~ epy(%, ) + e'po(x, ) + - (9-47¢)
p~ pa%, 1) + &po(, ) + oo (9.47d)
y~ eyi(¥, i) + e2yy(x, y) + oo (9.47¢)
Here
P = l—b (9.48)

is the stream function referred to a typical thickness of the shock layer
for x = O(1).

Substituting these expansions into the full problem (9.44) and (9.46)
and equating like powers of ¢ gives for the first approximation a nonlinear
system whose solution is simply that for the sharp wedge:

Pl’—_—“l:vl:ﬁ_—l,

_r+1 _2 4 r =D
p=tTg =T (9.49)

The linear equations for the second approximation can also be solved
in closed form. Our present purpose is served, however, by noting that
the entropy integral (9.44¢’) gives for the second approximation

b2 P2 1

h 4 P1 i : ©-30)
Thus there is a singularity at ¢s; = 0. One finds that the pressure is
regular there, so that the density is singular at the surface of the body
like 1/4,2. Likewise v is regular, but y is singular like I, and u like
1/§,%. These nonuniformities are compounded in the third and higher
approximations.
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9.11. Middle Expansion for Entropy Layer

The straightforward small-disturbance expansion breaks down near
the surface because the solution for the sharp wedge is not a valid first
approximation in the entropy layer. We treat the nonuniformity by the
method of matched asymptotic expansions.

Because the nonuniformity occurs along a line, as in boundary-layer
theory, only the normal coordinate i, is to be magnified. According to
(9.47d), (9.49), and (9.50) the outer expansion of the density behaves for
small ¢, like

+1 &
’y’_l( s ) (9.51)

This suggests introducing the new independent variable

Tt _ ¥
j=t-4 9.52)
We call this the middle variable, because still another magnification will
be required to reach the surface of the body.

Comparison with the outer expansion suggests a middle expansion of
the form

u~ 1 + eiy(x, ) + etiy(x, ) + - (9.53a)
v~ eBy(x, ) + Ty(x, ) + (9.53b)
P~ ey, ) + etPo(x, ) + - (9.53¢)
p~ pr(, ) + %o, 3h) 4 -+ (9.53d)
y ~edo(w ) + e(x, ) + eEgalx ) + o (9.53¢)

Substituting into the full equations (9.44), and matching with the leading
terms of the outer expansion (9.47) according to the asymptotic matching
principle (5.24) gives, for the first approximation,

%" —o, 5, ©) = y—i—lx (9.54a)
5, — %9 B,(x, 00) = ?%’1 (9.54b)
f;% —0, Pl o0) = - i 1 (9.54¢)
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_ - 2y P . 2
Z —_— e = — ——
2 a4 ST =0, i, (x, o) —— (9.54¢)
oV, 1 y—1
— = x ) = J oas f— oo (9.54f)
o p ' y+1

These can be solved in succession, giving

V. — 2 X 77 — ____2_._
_ 2 _ + 1 2 1/y
Phh=—"7""» 1= - ( l/l 2)
y 41 y— '+ 4
i 2 2 1 +¢2)W ©-33)
1

1)

e AN (E s R

This expansion too is invalid at the surface of the body, where the
velocity component u becomes infinite and the density is zero in the
first approximation. For the second approximation the entropy integral

(9.44¢") gives

Pe 2
ool B (9:56)
P1 ¢,2 2
Again it can be shown that p, is regular; hence, in view of (9.55), p, is
singular like —@-2/7),

9.12. Inner Expansion for Entropy Layer

The nonuniformity of the middle expansion shows that a third
asymptotic expansion is required to complete the solution. According to
(9.53d), (9.55), and (9.56), the middle expansion of the density behaves
for small ¢ like

p 2 YL gl 2 ) (9.57)

Y

wﬁz

This suggests introducing the new inner variable

w_t _ ¥ (9.58)
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which is the stream function normalized with respect to the nose radius
of the shock wave.

Comparison with the middle expansion suggests an inner expansion
of the form

ur~1 4+ &2U/(x,¥) + - (9.59a)
U~ el (x, ¥) 4 - (9.59b)
p~ 2Py (x, ¥) + - (9.59¢)
p~ "R (x, V) -+ -+ (9.594)
y ~eYyx, ¥) 4+ S22V (2, P) + - (9.5%¢)

Substituting into the full equations and matching with the middle
expansion yields

&Y,

=0, Yy(s, 00) = y—i—l * (9.60)
&61;} —o, Py(x, 00) — y—i—l (9.60b)
R% - 7:%_—(%}:1 ’ Tfﬁ Ri(x, ¥) ~ Z_El pers (9.60¢)
U, — V_}T% , Uy, ¥) ~ — (772}1? w2 (9.60d)
= R%’ Yy, ¥) ~ — i_i—} i{{f-/ (9.60¢)

These equations can be integrated in succession to find

__2_ _y 1 2\1/
Oﬂy—i—lx’ Rl—y_1(1+'f’)V
2 2y 1
= U, = .
P, iy 1 9.61)

ECER e 2
oy =1 dt

Y, = y+1J, (1 F )

This last expansion is valid at the surface of the body. In particular, it
gives the asymptotic shape of the body that supports the hyperbolic
shock wave as

2 el YN N S
' 8[y+1x y+1° yfo (1 + 2w * ]
2 y=1Valp? — 4§,
- e[y YT T e | I

O oAt 5. - e, s
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where I' is the gamma function. The first term is the result for the
sharp wedge, indicated by a dotted line in Fig. 9.9. The second
term is the asymptotic value of the displacement thickness of the entropy
layer. As in a viscous boundary layer, the mass flux is reduced because
the entropy, and hence the temperature, is increased by blunting, and
the density correspondingly reduced. Hence in the direct problem
(Fig. 9.10a) the shock wave is forced away from the body downstream

{a) (b)

Fig. 9.10. Displacement effect of blunting. (a) Direct problem. (b) Inverse problem.

even though it moves closer near the nose; in the inverse problem
(Fig. 9.10b) the body must move instead. Another similarity between
entropy layers and viscous boundary layers is evident from (9.54c) and
(9.60b): To a first approximation the pressure is constant across the
layer.

In analyzing the nonslender wedge, Yakura (1962) has calculated the
next approximation, which adds a term in x~! to (9.62). This suffices to
describe the body accurately up to within a few radii of its nose. His
analysis requires only the outer and inner expansions. Our middle ex-
pansion is introduced by the double limit process (cf. Section 5.3) in
which the slope and nose radius vanish simultaneously. Fig. 9.11 indi-
cates how this produces the three disparate lengths that characterize the
three expansions, where we have tacitly assumed L to be of order unity.

Ea

-

-« —

-— [ »
(a) (b)

Fig. 9.11. Disparate reference lengths for blunted wedges. (a) Thick wedge. (b) Thin
wedge.
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9.13. Composite Expansions for Blunted Wedge

In order to display the variation of flow quantities throughout the
disturbed region between the shock wave and body, we want to combine
the separate expansions into a single composite expansion. This provides
a useful illustration of the technique of forming a composite expansion
from more than two components (cf. Exercise 5.4).

Consider first the density. Applying the multiplicative rule (5.34) to
the middle and inner solutions yields

1/ b2 - g6 177
~ ril 1(%{?) 9.63)
which is valid in both subdivisions of the entropy layer. It is clear how
this expression assumes different forms in the middle and inner limits.
Repeating the process to combine this with the outer solution leaves the
result unchanged. It is therefore the desired uniform approximation,
valid in all three regions.

If instead we apply the additive rule (5.32), the uniform approximation
is found as

Sl ) e

Although this is equivalent, the previous form would be preferred for its
simplicity. It also corresponds to the result of Yakura for the thick

wedge.
For the ordinate y, our three approximations may be written as

2 —1
outer: ~ ;IT X+ 'y——}:—l SZJ (9.653)
o 2 12 eV ‘
middie:  y ~ g ex o __e(z, _ f [(_t_2_) 1] dtz (9.65b)
. ] 2 y—1 et Y
inner: y ~oET ex — o (t2 i 66) dt (9.65¢)

The result of either additive or multiplicative composition is unneces-
sarily complicated. A simpler form is found by inspection as

+13¢ f [(t2+84 ) —1] & (9.66)

2
yNﬁTE 12 L 66

and this corresponds to the result that Yakura found by additive com-
position of his two expansions.

SRR o
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Figure 9.12 shows the distribution of density between the shock wave
and body given by (9.63) and (9.66) at 24.5 radii downstream from the
nose of a hyperbolic shock wave with ¢ = 0.437, corresponding to a wedge

) 2 4 le

~ | l

Shock wave

Composite
_\/

'/ Sharp wedge -

Fig. 9.12. Density distribution at 24.5 shock radii downstream on 20° wedge,
M = oo,y = 7/5.

of 20-degree semivertex angle. Also shown are the outer, middle, and
inner approximations, and the result of Yakura in which the wedge is
not assumed to be thin. The discrepancies in surface location indicate
the inaccuracy arising from such a large value of .

Yakura (1962) has applied the method of matched asymptotic expan-
sions also to the axisymmetric problems of the blunted cone that supports
a hyperboloidal shock wave, and the body that produces a paraboloidal




192 IX. Some Inviscid Singular Perturbation Problems

shock wave at M = co. The latter problem has been treated with equal
success by Sychev (1962) using the method of strained coordinates.
However, it appears that the solution for the blunted wedge cannot be
found by straining the coordinates.

EXERCISES

9.1. Elongated nonlifting body. As a model of thickness effects for a wing of
high aspect ratio, consider incompressible potential flow normal to the axis
of a slender smooth body of revolution (Fig. 9.13). Show that to a first approxi-

‘\- r=€hn(z)

~

P4

Fig. 9.13. Flow normal to slender body of revolution.

mation the flow is plane at each section, but that straightforward iteration
leads to a difficulty analogous to Whitehead’s (Chapter VIII). Find the next
approximation using the method of matched asymptotic expansions. Apply
your solution to the ellipsoid of revolution, checking with the rule of Munk
(1929) that the surface speed on any ellipsoid is the projection of the maximum
velocity onto the tangent plane. Apply your solution also to the pointed parabolic
spindle. Explain why no correction is necessary at the tips of the ellipsoid. Devise
and apply a correction for the tips of the spindle.

9.2. Lifting wing with sharp tips. Calculate from (9.15) and (9.16) the second-
order spanwise loading and lift-curve slope for the wing of lenticular planform
bounded by two parabolic arcs. Devise a correction that renders the solution
uniformly valid near the tips. Discuss the corresponding correction for the
middle of a diamond planform.

9.3. Near-equilibrium flow over a wavy wall. Consider steady plane flow of
an inviscid gas in vibrational or chemical nonequilibrium. At an equilibrium
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Mach number of 4/2, the linearized equation for the perturbation velocity
potential is (Vincenti, 1959)

P P 3(8% A32¢):0

oy? ax | Cdx

ay? dx?

where 0 << A4 < 1, and ¢ is proportional to the relaxation time. Iterate upon
the familiar result for equilibrium flow (¢ = 0) over the wavy wall y = rsin «
to find the correction of order er. It is helpful to use the oblique coordinates
¢ =x—y and 5 =y (cf. Section 6.4). Correct the result in its region of
nonuniformity far above the wall. Form a uniformly valid first approximation.
Compare with Vincenti’s solution.

See
Note
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Chapter X

OTHER ASPECTS
OF PERTURBATION THEORY

10.1. Introduction

This last chapter is devoted to various special topics in perturbation
theory. We first consider several methods, other than the two standard
ones employed in previous chapters, for dealing with singular perturba-
tion problems. Next, we discuss the curious role of logarithms in per-
turbation expansions. We then examine in some detail the fascinating
question of extracting accurate results from a divergent or slowly
convergent series. Finally, we describe ways of joining two different per-
turbation expansions in cases where they cannot be matched in the sense
of the method of matched asymptotic expansions.

10.2. The Method of Composite Equations

We saw in Chapter VIII how Oseen corrected the nonuniformity in
Stokes’ approximation for flow at low Reynolds numbers by partially
including the neglected convective terms. The same idea can be applied
to any singular perturbation problem in which the nonuniformity arises
from the differential equations. One would proceed as follows:

(a) Identify the terms in the differential equations whose neglect in
the straightforward approximation is responsible for the non-
uniformity.

(b) Approximate those terms insofar as possible while retaining their
essential character in the region of nonuniformity.

(¢) Try to solve the resulting composite equations.
This ad hoc procedure has been successfully applied also to the position
of shock waves by Lighthill (1948), and to the vortical layer on an inclined

cone by Cheng (1962).
However, the method of composite equations seems always to be

195
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inferior to the two more systematic methods discussed earlier. Its
disadvantages are apparent in flow at low Reynolds numbers (Chapter
VIII), where the inner and outer expansions are relatively simple com-
pared with the composite solution of the Oseen equations. Thus it has
been superseded in the shock-wave problem by the method of strained
coordinates (Section 9.6; Lighthill, 1949b), and in the vortical-layer
problem by the method of matched asymptotic expansions (Munson,
1964).

The shortcomings of the method of composite equations may be
illustrated by reconsidering the boundary layer on a semi-infinite flat
plate (Chapter VII). We profit from experience (Section 7.14) and use
parabolic coordinates. The Navier-Stokes equations give for the stream
function the equation of Exercise 8.1. The straightforward approxima-
tion consists in setting v == 0, which yields

7 0\ s + ‘zbrm o
(¥ 7~ E) il (10.1)
This is invalid in the boundary layer, where applying Prandtl’s procedure
to the full equation yields instead

é‘["ﬂqu,u "T_ ‘/Jfl/’mm - l/"rz‘//;'r;n + EZ{/JU‘/JUV] = O (102)

We now seek a composite equation that includes both of these approxi-
mations. Only the first term in (10.2) is absent from (10.1). Addingit to
(10.1) yields as a composite equation

o ) ¢'E$ +‘l’nn

v 17,
7w (e g — iz ~0 (10.3)

/8 4y
Because our coordinates are optimal for this problem (Section 7.13), we
might suppose that the appropriate solution of this equation is Blasius’

solution expressed in parabolic coordinates:

WE i) = Ve (10.4)

However, trial shows that this is is not a solution. In fact, no simple
solution exists. In tackling simultaneously the difficulties of the inner
and outer regions, we have set ourselves an intractable problem.

Of course, the composite equation is not unique. To our form (10.3)
may be added any of the neglected terms in the full equation, and any
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multiple of the potential equation. Thus, knowing the solution (10.4),
we can construct an unlimited number of alternative composite equations
that it does satisfy, one of the simplest being

V[lel’mﬂm - 277 5] (‘/’ES -+ ‘/’m/)J + [f%‘h% - ¢'r] %)

+ 28, — )| Ghes + ) = 0 (10.5)

But surely no amount of insight would have suggested this choice.

10.3. The Method of Composite Expansions

A more promising method of directly obtaining a uniformly valid
solution is to substitute an assumed composite expansion (cf. Section
5.4). Latta (1951) has shown that one can often deduce the required
form of the expansion from an examination of the inner (“boundary-
layer”) solution. This provides a finite number of special functions
which are taken as the basis for the expansion. ’
' We illustrate this method for Friedrichs’ model problem (5.1). The
inner solution (5.6b) is found to involve the function e=*/. Because this
reproduces itself upon differentiation, no other special functions are
required. Latta therefore assumes a composite expansion in the form

S5 6) ~[A) + efl®) + ] — e () + ehy(x) + ] (10.6)

Substituting into (5.1) and collecting like powers of ¢ and factors of
e~*/* yields

H o =a h' =0, f1(0) + m(0) = 0, A =1
(10.7a)
L= =i =0, h/ =k =0 f0)+h(0) =0 f()=0,
m>=2 (10.7b)

Solving these gives f; = (1 — a) + ax, hy = —(1 — a), andf, = A, = 0.
Hence the solution is ,

flese) ~ (1 — a)(1 — e /) + ax (10.8)

This result is supposed to be uniformly valid in the interval of interest
0 < & < 1, with an error smaller than any power of e. This is seen to
be true by comparison with the exact solution (5.2).
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In more complicated problems the inner solution, together with its
derivatives, may suggest more than one rapidly varying special function.
For example, if we consider the linearized Oseen equation (8.16) in
Cartesian coordinates for a semi-infinite flat plate, the boundary-layer
solution contains the complementary error function erfe(y/2R-1/2x1/?);
and we must also include its derivative exp(—y?*4Rx), higher deriv-
atives giving nothing new. Also, it may be necessary to generalize the
argument of the special functions, allowing it to be a smooth function
of all the coordinates that is to be determined in the course of the
analysis. As a result of these two modifications, the composite expansion
for the stream function in Oseen flow past the flat plate is taken in the form

P(x, y; R) ~ [fi(x, y) + RVHy(x, ) + -]
4 erfefg(x, )/ RV2[hy(x, y) + R7V2hy(x,y) + =]
+ expg(x, y)/R1[ky(x, y) + R7V2hy(x, ) + -] (10.9)

The change of argument permitted by the function g is essential in this
case, whereas it was unnecessary in the previous example. In fact, one
finds that g(x, y) must be § [(x% + y?)!/2 — «], 4 the square of the parabolic
coordinate 7, which leads naturally to the optimal coordinates of Kaplun
(Section 7.13). The reader can complete the solution, or see Latta (1951)
for details.

Further complications may arise, particularly in nonlinear problems.
In the model problem of Section 6.2, the rapidly varying functions
suggested by the inner solution (6.18) and its derivatives are infinite in
number. Also, examination of the inner solution does not always indicate
the correct form of the special functions.

10.4. The Method of Multiple Scales

The difficulties just mentioned can be avoided by assuming a more
general form for the composite expansion. As discussed in Section 5.3,
a perturbation solution is singular because it involves two disparate
length scales for one of the coordinates. Accordingly, Cochran (1962)
and Mahony (1962) suppose that the solution depends upon that coor-
dinate separately in each of its two scales. That is, the sensitive coordinate
is replaced by a pair of coordinates, thus increasing the number of
independent variables. One can then assume a conventional asymptotic
expansion. A similar idea has been advanced by Cole and Kevorkian
(1963).

We again use Friedrichs’ model (5.1) for illustration. It is clear from
the inner solution or other considerations that the solution depends upon
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x/e as well as x itself. We therefore assume an asymptotic expansion of
the form

flx; &) ~ fulx, X) + efy(x, X) + e¥y(x, X) + - (10.10a)
where
X = x/e (10.10b)

This expansion is intended to hold uniformly not only for 0 < x < 1
but also for 0 <{ X < . Certain restrictions will have to be imposed to
assure uniformity for X — <0, corresponding to & — 0 with x > 0; and
this is in fact the crux of the method. y

Of course we have replaced ordinary by partial differential equations
but it will be seen that no real complication has been introduced. Substi—,

tpting into (5.1) and equating like powers of ¢ yields the system of equa-
tions

fixx +fix =0 (10.11a)
foxx + fox = a — 2fux — fra (10.11b)
Fosx +Fux = = Yonvex — fon-ve = fon-rze,  m =3 (10.11¢)

Although. these are nominally partial differential equations, the first is
foFm.ally identical with the first inner equation [(5.5) with ¢ — 1], and
this is always the case. Its solution is

Al X) = ey(x) + dy(x)e ¥ (10.12)

where the functions of integration ¢,(x) and d,(x) are still arbitrary.

‘At this point the argument assumes a striking resemblance to that of
Lighthill’s method of strained coordinates (Chapter VI). If our com-
posite expansion (10.10) is to be uniformly valid, the ratios f,/f,,

f3.--f23 and so on, must remain of order unity as ¢ — 0. We therefore
require that

Each approximation shall be no more singular than its
predecessor—or vanish no more slowly—as ¢ — 0 for
arbitrary values of the independent variables. The same
shall be true of all derivatives.

(10.13)

The analogy with Lighthill’s principle (6.1) is evident.
Just as in the method of strained coordinates, it is possible to achieve a
uniform first approximation by examining the second-order equation,

without solving it. In our example, the second-order equation (10.11b)
becomes
Joxx + fox = @ — ¢/'(x) + d)'(x)e ¥ (10.14)
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Any particular integral will include a term (a — ¢,")X. This would make
the second approximation more singular than the first as.X — o0, and
will therefore be removed by choosing ¢,'(x) = a. Simllarly, the re-
maining particular integral will include a term —d,' Xe ¥, whlch_ wogld
make the derivative f* vanish more slowly in the second approximation
than the first as X — o0. We therefore annihilate the right-hand side by
choosing also d;’(x) = 0. The values of the constants ¢y and d; can now
be found by replacing X with xe in (10.12) and imposing the boundar’y
conditions in (5.1). The result is just (10.8), which was found by Latta’s
method. '

At least one generalization is required in more comphca.ted problem.s.
As in the preceding method, it may be necessary to generalize the magni-
fied coordinate (10.10b) by setting

x =8 g0y =0

€

(10.15)

where g is a smooth function that is positive when it§ argument is posi-
tive, and is determined in the course of the .analysm. The regder can
verify that in the present example the prinC}ple (10.13) requires that
g'(x) = 1. In general, of course, g must vanish at the location (?f the
nonuniformity, ¢ may be replaced by some other power or func.tlon of
the perturbation parameter, and the asymptotic.sequen.ce may .mvolve
other functions of ¢ than integral powers. Partial differential equations are
increased in degree by only one as a result of introduciltxg. the new variable
X, but the function g must depend upon all the original independent
variables. Some illuminating examples are given by Cochrgn (1962).

This method and the one discussed in the previous section are seen
to convert the inner solution of the method of matched asymptotic
expansions into a uniformly valid approgimatwn. They therefgre ap-
parently provide an answer to the question of how to generalize the
concept of optimal coordinates (Section 7.15). It is the ro.Ie of the func-
tion g to provide the freedom necessary to make the coordinates optlmatl.
It is possible that, with further development, one of thes.e methods.wdl
replace those used previously as the most versatile and reliable technique
for treating singular perturbation problems.

10.5. The Prevalence of Logarithms

The devotee of perturbation methods is continually being surprised
by the appearance of logarithmic terms where none coulc} reasonably
have been anticipated. The recent history of fluid mechanics recor('is a
number of well-known investigators who fell victim to the plausible

R i i
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assumption that their expansion proceded by powers of the small
parameter. As suggested in Chapter III, one must be ready to suspect
the presence of logarithms at the first hint of difficulty. Their presence in
both parameter and coordinate perturbations has been amply illustrated
by examples in previous chapters. See, for example, (1.2), (1.4), (1.6),
(3.24), (3.27), (7.47), (8.38), (8.48), (9.18), and (9.40). Although
Stewartson (1957, 1961) has encountered loglog’s in various viscous
flow problems, they are blessedly rare.

Logarithmic terms arise from a variety of sources. In some problems
they appear naturally as a result of cylindrical symmetry. This is true,
for example, of slender-body theory (Section 9.8), where logarithms
describe the essential singular nature near the axis of such functions as the
Bessel function K, and the inverse hyperbolic function sech~! that
occur in more complete theories.

Another common source of logarithms is a small exponent. This is
exemplified by (4.50), which shows how the expansion is nonuniform.
This situation always arises at a slight corner where the equations are
elliptic, as for the biconvex airfoil of Section 4.7. When one is confident
that this is the correct diagnosis, it may be possible to render the solution
uniformly valid simply by replacing the logarithms with near-integral
powers (Exercise 9.1; Munson, 1964).

In inverse coordinate expansions for viscous flow, logarithms seem
often to be required to ensure exponential decay of vorticity (Section
7.11). In other problems their source is even more obscure. Many of
these are singular perturbation problems. One can only philosophize that
description by fractional powers fails to exhaust the myriad phenomena
in the universe, and logarithms are the next simplest function.

Expansions in this latter group typically begin with simple powers of
the perturbation quantity, its logarithm entering linearly only in the
second, third, or even fifth term. Thereafter logarithms appear regularly
to integral powers that increase successively, though often only at alter-
nate steps. In a singular perturbation problem the appearance of loga-
rithms in, say, the inner expansion forces them into the outer expansion
at a later stage through the shift in order of terms that takes place in
changing from inner to outer variables.

When a logarithm thus makes its first appearance in a higher-order
term, it is accompanied by an algebraic term containing the same power
of the perturbation quantity. The logarithmic term is much easier to
calculate than its algebraic companion, because it satisfies a homogeneous
differential equation. Nevertheless, the two terms must be regarded as
together constituting a single step in the process of successive approxima-
tion. That the two terms are intimately related is evident from the fact
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that modifying the perturbation quantity (Section 3.1) transfers a con-
stant from the logarithmic term to its algebraic companion.

For practical values of the perturbation quantity, its logarithm does not
differ greatly from unity, so that the algebraic term—though of smaller
mathematical order—may actually have the greater magnitude. More-
over, experience suggests that the two terms are invariably of opposite
sign, and that their sum is often much smaller than either of them alone,
so that retaining only the logarithmic term may worsen the accuracy. An
example is the expansion (1.6) for the lift of an elliptic wing. For
A = 6.37 it gives

ac,

= (10.16)

= 27(1 — 0.314 — 0.074 + 0.088 + -+

whereas Krienes (1940) calculates the exact value as 4.55. Two terms
give 6 per cent error, the logarithmic term increases that to 15 per cent,
but its algebraic companion reduces it again to 3 per cent. Thus it appears
that the final terms in such series as (1.2) and (1.4), though of theoretical
interest, have no practical value until the next term is calculated. Similar
remarks apply to the Nth power of the logarithm, which must be grouped
as a single term with its N companions containing lower powers of the
logarithm.

We saw in Section 8.6 that the occurrence of logarithmic terms can
severely limit the range of applicability of a perturbation series. We
return to this question later, in Section 10.7.

10.6. Improvement of Series; Natural Coordinates

One can calculate only a few terms of a perturbation expansion,
usually no more than two or three, and almost never more than seven.
The resulting series is often slowly convergent, or even divergent. Yet
those few terms contain a remarkable amount of information, which the
investigator should do his best to extract.

This viewpoint has been persuasively set forth in a delightful paper by
Shanks (1955), who displays a number of amazing examples, including
several from fluid mechanics. A simple one is the numerical series

1 1 1 1 1 1
r=4l-grz—gte o tn )

3 (10.17)

which converges, but with painful slowness. The seventh partial sum,
shown below in the second column, is correct to only one figure, and
400,000 terms would be required for six-figure accuracy. Nevertheless,
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the first seven terms actually contain = to more than six significant
figures, as is shown by forming the following array:

" Sn ex(S)) a*(Sy)  a(Sy)

1 4.0000000

2 26666667 3.1666667

3 3.4666667 3.1333333  3.1421053

4 2.8952381 3.1452381 3.1414502 3.1415993 (10.18)
5 3.3396825 3.1396825 3.1416433

6 29760462 3.1427129

7 3.2837385

Here the third column has been formed from the second by applying
the nonlinear transformation

_ S'/H-lSn—l _ Sn2
el(Sﬂ) - S

n+1 L Sn——] - 2Sn

Repeating the process yields the subsequent columns, the last of which is
correct to six figures. Applying the transformation once more along the
lower diagonal improves the accuracy further. These and related trans-
formation are discussed in detail by Shanks.

An important preliminary consideration in a perturbation problem is
the proper choice of the expansion quantity (cf. Section 3.1). For
coordinate expansions, this means using a system of natural coordinates.
This is by no means as precise a concept as that of optimal coordinates.
However, some problems are clearly adapted to a particular coordinate
system, which is generally found to yield the most satisfactory results. A
good example is the superiority of parabolic to Cartesian or other
coordinates in problems involving parabolic boundaries. For the limiting
case of a semi-infinite flat plate, the role of parabolic coordinates in
boundary-layer theory was discussed in Chapter VII.

A second example is the inverse blunt-body problem (Fig. 3.5) for a
paraboloidal shock wave. We introduce parabolic coordinates ¢, 7
according to

(10.19)

x +dy = $b[(é + i) + 1] (10.20)

so that a shock wave of nose radius b is described by » = 1. Then
Cabannes’ series (3.25) for the stream function near the axis, with its
erratic changes of sign, is recast (Van Dyke, 1958b) into. one that alter-
nates smoothly after the first two terms:

Y 1 8 155 15,235

1

35,416 . 5,656,651
Ty 4o T gy (o

(10.21)
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Figure 10.1 shows that among the advantages of this form is a clear
indication that the expansion diverges at the nose of the body, though
less wildly than its Cartesian counterpart. Further improvement of this
series is discussed in the next section.

.50
r Shock
* wave
1
— — —x
25
2 terms
A4
r | |
o 10 .20
X
3
=25
4
6
5
7
-.50
(a)

Fig. 10.1. Series expansion for stream function on axis behind paraboloidal shock
wave at M = 2,y — 7/5. (a) Cartesian coordinates.

A third example is the Blasius series (1.5) for the skin friction on a
parabola. Recasting it into parabolic coordinates [with b in (10.20)
replaced by 4] yields (Van Dyke, 1964a)

IV Re, = 1.23259¢ — 1.72643¢% + 2.113768°
— 2.44192¢7 4 2.73149£° — 2.99343¢Y + -+ (10.22)
Numerical tests (Exercise 10.3) tend to confirm a conjecture, based on

theoretical arguments, that the radius of convergence has been increased
by almost 50 per cent.
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Fig. 10.1. (b) Parabolic coordinates.

10.7. Rational Fractions

Applying Shanks’ nonlinear transformation (10.19) to the first three
terms of a power series 1 + as 4 be® 4 ... yields a simple rational
fraction:

a+ (a®* — b)e

a — be

(10.23)

This is often a more accurate approximation to the sum of the series
than the original three terms. For example, it yields the exact sum if the
original is a geometric series, whether convergent or divergent. This
fact tends to explain the success of Shanks’ transformation with a series
such as (10.17), which is evidently “nearly geometric.”

When more than three terms of a power series are known, Shanks
(1955) suggests forming rational fractions of higher order. Thus from
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the first five terms of Goldstein’s series (1.3) for the drag of a sphere
in the Oseen approximation, he obtains

R 73,920 + 66,600R 4 10,880R*

= Cpa (10.24)
6= P~ 773,920 + 38,830R | 689R?

Here R is the Reynolds number based on radius. This agrees well.wit.h
more exact calculations out to R = 10, whereas the original series is
useless for computation above R = 1. The denominator of the rational
fraction (10.24) vanishes at R = —1.97 and —54.4. Although the second
of these is too large to be significant, the first suggests t.hat the conver-
gence of the original series (1.3) is limited by a singularity at R = —2.
"T'his is plausible because, as is evident from (8.17) and (8.18), the natural
parameter for Oseen flow is R, in terms of which the singularity would
lie at —1 in the complex plane (cf. Section 3.5).

In the same way, Van Tuyl (1960) has formed rational fractions from
Cabannes’ series (3.25) for the flow behind a paraboloidal shock wave
at M = 2, and its counterpart (10.21) in parabolic coordinates. The
latter gives

26 1 —0.73878(1 — ) — 37.827(1 — 7)* 4 72.098(1 — n)*

10.25
Y T 45946(1 — 7)) — 13.212(1 — )2 — 3.5958(1 — 7)° (10.25)

Whereas the original series diverges at the body (Fig. 10.1), this agrees
well with numerical solutions, apparently giving the stand-off dlstapce 4
correct to four significant figures. The superiority of parab.olic coord}nates
is strikingly confirmed by the discovery that in Qart§s1an coordinates
the corresponding rational fraction becomes infinite in the flow field
between the shock wave and the body.

We can make a bolder application of the same technique to Cabannps’
other attack on the blunt-body problem. From his two-term expansion
(3.26) in powers of time for the stand-off distance. following an 1m.pu151've
start, we can form a rational fraction that remains bounded at infinite
time, and so hope to estimate the steady-state value. This gives for
M = oo and y = 7/5:

PO v,
a

~ 7 (10.26)
ERML

a

This approaches 0.429 for plane flow (n = 1), which is far closer than
the original result to the accurate numerical calculationlof 0.377 for a
circular cylinder. This success makes it seem worthwhile to compute

st
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further terms in the expansion. As suggested in Section 3.9, the agree-
ment is poorer for axisymmetric flow, where the rational fraction (10.26)
gives 0.214 compared with a numerical value of 0.128 for the sphere.
Other tests of this technique of extrapolating a direct coordinate expan-
sion to infinity are proposed in Exercises 10.7 and 10.8.

A technique analogous to that of rational fractions is needed to
improve the utility of series containing logarithmic terms, such as (1.4).
No striking results have yet been achieved. We give an example of
partial success. The series (1.6) for the lift of an elliptic wing can, by
analogy with Prandtl’s result (9.1a), be rewritten as

acy 27
+Z+;§(\ogm 4@)

AZ

This is, in fact, of the form that arose naturally (with different, incorrect,
constants) in the analysis of Krienes (1940). The accuracy is considerably
improved, the error being reduced from 11 to 1 per cent at 4 = 2.55,
for example. However, this modification has the defect of still becoming
infinite (Fig. 9.4), though at a smaller value of 4 than the original series.
There is evidently room here for further improvement.

10.8. The Euler Transformation

The transformations used in the previous section suffer—despite
their evident utility—from the objection that they must usually be
applied arbitrarily and blindly, with no understanding of the mechanism
involved. This is inevitable when one knows neither the nature nor the
location of the singularity that limits convergence. It also goes without
saying that one does not always achieve such remarkable improvement
as in the preceding examples.

With further insight into the source of divergence, one can proceed
more rationally and hence more successfully. Thus one may know the
location of the singularity, though not its character. As discussed in
Section 3.5, it often happens in applied mechanics that a power-series
expansion having physical significance only for positive real values of
the perturbation quantity is restricted by a singularity elsewhere in the
complex plane, usually on the negative axis, and at —1 if the variables
have been chosen in the most natural way. That this situation exists
may be known from fundamental considerations, or be suggested by a
rational fraction as in (10.24), or merely be suspected.

It was suggested in Section 3.5 that under these circumstances it is
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usually possible to improve the series by recasting it in powers of the
new parameter

= _E
F=1 (10.28)

The result is a special case of a rational fractions. The purpose of this
Euler transformation is to transfer the singularity from ¢ = —1 to the
point at infinity. If there are no other singularities in the complex
plane, the radius of convergence is thereby made infinite. Various
applications in applied mechanics have been discussed by Bellman
(1955). We give three examples drawn from Chapter 1.

First, consider once more the Blasius series (1.5) for skin friction on a
parabola, which was improved somewhat by transforming to the more
natural parabolic coordinates (10.22). The latter form clearly has unit
radius of convergence, no doubt as a consequence of the singularity at
¢ = i in the conformal mapping for the parabola. The appropriate
Euler transformation is therefore an expansion in powers of £ (1 + &%),
after extraction of a factor ¢ because the skin friction is an odd function

of ¢£. This yields (Van Dyke, 1964a)

LEVRe ~ 1.23259(1—_%—2) — 0.49384(; _f: 62)2
— 0.10650(1—_5—:?)3 — 0.04733(1—5—2?)4
~ 0.02675(‘1—_%)5 — 0.0172(1—_%?)6 — o (10.29)

The coefficients now decrease more rapidly than 1;#2, suggesting that
even far downstream the series converges faster than X 1/n* = #2/6. If
so, it should at ¢ = oo reproduce Blasius’ value of 0.664 for the flat
plate (Section 7.10). The successive partial sums are

1.743, 1.045, 0.894, 0.827, 0.789, 0.765, - (10.30)

and closer examination leaves little doubt that these are indeed converging
to the Blasius value. Thus the radius of convergence of the Blasius series
has been extended to infinity.

As a second example, we undertake to improve Chester’s Newtonian
series (1.7) for the stand-off distance of the blunt body that produces a
paraboloidal shock wave at M = co. There is reason to believe (Van
Dyke, 1958b) that this promising method yields an expansion that
converges for y << 11/5, a value not attainable in reality. However, the

B
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rate of convergence is discouragingly slow. At y = 7/5, where the
perturbation parameter (y — 1)/(y -+ 1) is only %, the series gives

4
5 = 8(1 — 0.667 + 0.433 — 0.306 + -+ (10.31)

which is useless for computation.
Following our recommendation of natural coordinates (Section 10.6),

we first recast this in parabolic coordinates (10.20). The value of 7 at the
nose of the body is then given by

3 93 631 \ 8y —1

14 — g2 _— I a2 T8 .. — Y 1

Mo 86 ‘1 & 808 44883T ), .9:\/~ y——— (10.32)
There are various indications that this choice of ¢ is the most natural one,
mcludmg th'e fact that the series now oscillates almost like a geometric
one w1fth a singularity at ¢ = —1. Making the appropriate Euler trans-
formation (10.28) then yields

3 e 13/ & 3 177 1 & \*

b= = EE[TIE B 8_0(1 ) 2240(1 T ) ] (10.33)
"This result is an unqualified success. The coefficients of the last two terms
decFease faster than the inverse square of their exponents, suggesting
rapid convergence even at & = c0. However, even y = oo would
correspond only to e = 1.633; and for actual gases y cannot exceed 5,3,
so that e is less than 0.817, and & (1 + ¢) less than 0.450. :

For y = 75, the successive partial sums of (10.33) give the stand-off
distance as

% = 0.0950, 0.0973, 0.0978, - (10.34)
Applying Shanks’ transformation (10.19) to these yields 0.0979. Various
pumerical calculations have given values between 0.0980 and 0.0990. It
is interesting to observe that this approximation, though based on the
assumption that y is close to I, can now be used at y = oo, where it
predicts a stand-off distance about three times as great as at y = 7/5.
Prc?vious less successful attempts to improve Chester’s series, usi'ng
(raitglg)gn)al approximations, are given by Van Dyke (1958b) and Van Tuyl

As a third example, we reconsider Goldstein’s series (1.3) for the
Oseen drag of a sphere. As discussed in Section 10.7, both theoretical
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and numerical considerations suggest that there is a singularity at
R = —2. The appropriate Euler transformation then yields

Com gt [ i d b ® el

2459 R \* 9469 R \3
"~ 134,400 (2 ¥ R) ~ 537,600 (2 ¥ R) - ] (10.35)

This has the appearance of converging for all R, though less spectacularly
than the previous two examples. The result is less accurate than the
rational fraction (10.24) at R = 20, but has the advantage of remaining
useful at R = oo, where (10.24) gives Cp, = 0 but the next rational
fraction, with a cubic numerator, predicts negative drag. At R = oo the
successive partial sums of (10.35) give

Cp~ 942, 7.07, 4.83, 4.68, 451, 434, - (10.36)

Although these decrease somewhat irregularly, it is not unlikely that they
are approaching from above the value 3.33 calculated by Stewartson

(1956).

10.9. Joining of Coordinate Expansions

Matching, as it is used in the method of matched asymptotic expan-
sions, connects two parameter expansions for the same limit process that
are valid in adjacent regions of space-time. Occasionally it is possible to
join other kinds of expansions in analogous fashion. We discuss in this
and the last section two kinds of problems where this is possible.

Different coordinate expansions for the same problem can sometimes
be joined. If they are both convergent power series, the process is that of
analytic continuation, which is simple in principle. The practical com-
plications are illustrated by Cabannes’ expansion for the stream function
behind a paraboloidal shock wave, recast in parabolic coordinates (10.21).
That series converges only about three-quarters of the way to the body
(Fig. 10.1), because of a limit line in the physically nonexistent upstream
continuation of the flow field (Van Dyke, 1958b). The series can be used
to calculate, say, halfway to the body, and a new series from there will
reach the body. However, the new series cannot be obtained directly
from the original truncated series, because it would be equivalent to it
and so have the same limit of convergence. A remedy (Lewis, 1959)
is to use the original series only to obtain new initial data at the
intermediate station, and to calculate further coefficients using the
differential equation.
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More often one makes a direct and an inverse expansion for small and
large values of a coordinate. The latter is usually not convergent, but
only asymptotic, and contains logarithmic terms and undetermined
constants (Section 3.10). Nevertheless, the two series can be joined—and
the constants thereby found—if the direct series has an infinite radius
of convergence. We demonstrate this for the boundary layer on a para-
bola.

Recasting the inverse expansion (3.27) into parabolic coordinates
(10.20) and transferring the logarithmic term to the left side gives

( Ux (172 log (1 1@ (10.37)

) e 0399 =R ~ 0.664(1 -

c,—1 )
] £ ¢ 1 )

e

14

We now evaluate this same quantity from the direct expansion (10.29),
using the fact that the series

log (1 4+ &) & 1(
1 -

1 2 2 1
e 1re e el

2 3
converges for ¢ <{ oo. Together with the fact that £ = 2x on the
parabola, this gives

- 0,()84(1_5_Z 52‘)3 — 0'034(T—f §2)4
- 0.018(%)5
- 0.011(i£—,g.—)6 — (10.39)

for all € < w. Then expanding formally for small 1,(1 +— &) and
comparing with (10.37) yields the undetermined constant C; as (Van
Dyke, 1964a)

€, =1 (—1.34 4+ 1.00 + 0.25 = 0.13 -+ 0.09
+0.07 + ++)/0.664 ~ 1.90 (10.40)

To be sure, the result is found only approximately as the partial sum of
an infinite series; but it is obtained by asymptotic joining rather than
numerical patching at some large finite value of ¢. Patching with a
numerical integration from the nose at ¢ = 6.8 gives C;, = 1.83.
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This sort of joining is not possible when the direct series has only a
finite radius of convergence, or is merely asymptotic. In the latter
category, for example, is the approximation (3.24) of Carrier and Lin
(1948) for viscous flow near the leading edge of a semi-infinite flat plate,
which cannot logically be joined with the higher-order boundary-layer
expansion (Section 7.11). Imai (1957a) has patched the skin friction at
Ux/v = 1, but the validity of this step is questionable.

10.10. Joining of Different Parameter Expansions

Expansions for different limits of a single parameter (e.g., for small
and large Reynolds number) could be joined as in the preceding section
if one of them were convergent over the whole range. No examples are
known, although (10.35) comes close to providing one.

Expansions for two different parameters can be joined in finite terms
only if one obeys an appropriate similarity rule. Thus the thin-airfoil or
slender-body expansion for subsonic compressible flow can be extracted
from the Janzen-Rayleigh expansion in powers of M2, but the converse
is not possible.

Consider the simplest example, plane flow past the parabola
Yy = -+ &(2x)'/?, having nose radius 2. The expansion of the velocity
potential in powers of M? has been carried out by Imai (1952) including
terms in (y -+ 1)M* Expanding that complicated result formally for
small ¢ yields

— 2 2
b ~x ey + LM2erp? —’72——226- e logt +
&t . 248 (10.41a)
1 : : 4 |
— L2 4 ® T LT log o] OIMY, (- DME, &

where [cf. (10.20)]
£ =V £ 37 + x4 Oe)

P VAT kO

(10.41b)

To convert this double expansion for small ¢ and M2 into a single
expansion for small &, we must sum the series in M2. This unlikely task
is accomplished simply by appealing to the second-order similarity rule

for subsonic small-disturbance theory (Van Dyke, 1958a), according to
which

B, My, €) ~ 5 + &, By; Be) + e[ fu )

M)+ G 1) g ful ] O (10.42)
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where B = (1 — M?)'/2 and each function has the same arguments as
the first. The previous double expansion (10.41) is compatible with
this rule only if it can be replaced by

e _ 1 M2 , ;’z ‘ 52 + ﬁ2
~ X —i" —_— — - g2 4 - ‘ l
¢ /3 7) 4 B.} € ( 52 + ,ﬁZ - Og 46262 )
oy 1imM afg 7 &4 7
16 B @ ape ] + 06 (1043)
where

£ =t L B2 4 x

P VAT s

(10.43b)

and this is the second-order thin-airfoil solution. The corresponding
joining for the paraboloid of revolution is given by Van Dyke (1958¢).

EXERCISES

10.1. Lighthill’s equation by multiple scales. Solve the problem (6.3) using the
method of multiple scales, showing that the result is not (6.12c) but an equally
acceptable alternative. Try solving also by Latta’s method of composite expan-
sions.

10.2. Unmatchable problem. Show that the method of multiple scales is
successful for the problem

o +f=1, f0)=f(0)=1
whereas the method of matched asymptotic expansions breaks down.

10.3. Estimate of radius of convergence. Estimate the radii of convergence of
the series (1.5) and (10.22) using Cauchy’s ratio test, and compare with the
values (s/a) = w/4 and §* = | suggested by the conformal mapping for the
potential flow. Do the same for (1.7) and (10.21), and compare with the sin-
gularities of successive rational approximations.

10.4. Lift of elliptic wing. Calculate the first three approximations from (1.6)
and (10.27) for A = 8/m (axis ratio of 2: 1). Estimate the complete sum, and
compare with Krienes’ value of 2.99.

10.5. Rational approximations for friction on parabola. Form rational approxi-
mations to (1.5) and (10.22), and thereby try to extract the limiting value far
downstream.
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10.6. Critical Mach number for circle. The critical Mach number (where
local sonic speed is first attained) is approximated by successive partial sums
of Simasaki’s series (1.1) as

0.4659, 0.4206, 0.4090, 0.4043, 0.4020, 0.4008,

Estimate the true value, and compare with Simasaki’s own estimate of 0.40.
Estimate the radius of convergence of (1.1), compare with Simasaki’s 0.50,
and contrast with the critical Mach number. Consider the possibility of applying
an Euler transformation to (1.1).

10.7. Friction at nose of impulsively started cylinder. Try to extrapolate (3.23)
to infinite time, and compare with Hiemenz’ value for steady flow (Schlichting,

1960, p. 78).

10.8. Separation on impulsively started circle. On a circular cylinder of radius
a started moving impulsively through viscous fluid with speed U, the skin
friction varies initially with time in proportion to (Goldstein and Rosenhead,
1936)

2

1 -+ 2.8488 cos 0(%') — [0.8795 cos? 6 — 0.2390 sin? 6] (%)

where 6 is the angle from the forward stagnation point. Find the location of
the separation point as a function of time. Extrapolate to infinite time, and
compare with the known value of 6 = 109 degrees (Schlichting, 1960, p. 154).

l

NOTES

Note 1. Introduction

These Notes have been added to bring the text of 1964 up to date.
They briefly describe significant advances in the subject, and add
relevant references to the literature through mid-1975. Further lists of
references, for applications to fluid mechanics and other fields, can be
found in the book of Nayfeh (1973).

Each note is keyed to one or more sections of the main text, where
an indicator of the form shown here at the right appears in the margin
of the page. Whenever possible, related comments have been com-
bined into a single Note, with the aim of making this section less
fragmentary.

Note 2. Computer Extension of Regular Perturbations

Since the late 1950s it has been feasible to delegate to an electronic
digital computer the rapidly mounting arithmetic labor involved in
extending a regular perturbation series to high order. This procedure
has been applied to a variety of problems in fluid mechanics, includ-
ing several discussed in this book. The history of the idea, practical
details, and a number of applications have been surveyed by Van
Dyke (1975, 1976).

The Janzen-Rayleigh expansion (Section 1.3) has been extended to
order M2 by Hoffman (1974a) and to order M'® by W. C. Reynolds
(unpublished). The result for maximum surface speed, with y = I, is

% = 2.00000 + 1.16667 M? + 2.57833 M* + 7.51465 M®
+ 25.59041 M® + 96.26329 M0 + 387.92345 A2
+ 1646 M + 7450 M1 + - . . (N.1)

Here the coefficients of M* through M° differ slightly from those of
Simasaki in Equation (1.1) because the value of v is different. The last
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two coeflicients are relatively inaccurate because they were computed
only in single-precision arithmetic. Calculating the successive ap-
proximations to the critical Mach number (Exercise 10.6) and then
repeatedly applying the nonlinear transformation of Shanks (Eq.
10.19), Hoffman estimates the critical Mach number as 0.3983
+ 0.0002. This agrees with the value 0.39852 + 0.0002 calculated
numerically by Melnik and Ives (1971).

Goldstein’s series (1.3) for the Oseen drag of a sphere in powers of
Reynolds number has been extended by Van Dyke (1970). Terms
through order R?® were calculated in one minute of computer time.
The graphical ratio test of Domb and Sykes (Note 15) shows that the
nearest singularity, which was conjectured on the basis of rational
fractions (p. 206) to lie at R = —2, is actually located at R =
—2.09086. Applying the Euler transformation (Section 10.8) that
maps that singularity away to infinity yields a new series that con-
verges out to infinite R and, with some further manipulation, repro-
duces Stewartson’s value (p. 210) of C, = 3.33 at R = oo.

A noteworthy application of this technique is to plane periodic
water waves. Early in his career Stokes expanded the solution in
powers of the coefficient a of the linearized approximation, calculat-
ing the second approximation for constant depth and the third ap-
proximation for deep water. Thus he found the surface of the wave in
deep water described, for an observer moving with the wave, by

y = acosx — a20052x+§a3cos3x+-'- (N.2)

N —

More than thirty years later Stokes added two more terms, and con-
jectured that the expansion converges for the highest wave, which has
sharp peaks of 120-degree angle. Subsequently Wilton carried the
calculation for deep water to tenth order, but made errors at eighth
order. Using the computer, Schwartz (1974) has extended the series
to 117th order. Analyzing the coefficients, he showed that Stokes’s
expansion fails to converge to the highest wave because the coef-
ficient a is not a monotonic function of the wave height. He eliminated
this defect by reverting the series to give an expansion in powers of
wave height, and was then able to calculate the maximum wave
height to five figures.

Some other computer extensions at low Reynolds number are
described in Note 10.
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Note 3. Comments on the Exercises

It was mentioned in the original Preface that the Exercises at the
end of each chapter contain much additional information in concise
form. We point out here that some of them have been subsequently
solved in the literature or otherwise extended, that several can be
better posed, and that it is interesting to try alternative techniques on
a few.

Exercise 2.2. Slightly porous circle. It is better to ask for the velocity
potential, because for it the effect of slight compressibility can be
deduced from Equation (2.2), whereas it is tedious to extract from it
the corresponding result for the stream function.

Exercise 2.3. Corrugated quast cylinder. Davey (1961) has used this
solution to illustrate how a stagnation point can be a saddle point of
attachment in inviscid flow.

Exercise 2.4. Circle in parabolic shear. ~As preparation for the modi-
fication of Exercise 5.7 described below, it would be useful to consider
also the parallel stream with profile u = U cosh(e1/2 y/a).

Exercise 4.5. Exact solution for biconvex airfoil. The discrepancy
pointed out in the last two sentences is discussed in Note 4 below and
in the reference given there.

Exercise 5.7. Circle in parabolic shear. The problem as posed is un-
necessarily complicated by nonlinearity. The essentials are exhibited
more simply if, in the parallel flow far upstream, the parabolic profile
is replaced by the hyperbolic-cosine profile u = U cosh(e'/? y/a),
which is almost the same near the cylinder.

Exercise 6.2. A problem of Carrier.  The factor multiplying the
exponential in the expression given for x can be simplified to a linear
form if we weaken Lighthill’s principle as described in Exercise 6.1.
Another way of treating the problem is to interchange the roles of
the independent and dependent variables, which transforms it into a
regular perturbation problem for x(f). The solution using matched
asymptotic expansions, discussed by Carrier, is more complicated.

Exercise 6.4. Pritulo’s method. Pritulo’s idea of introducing the
straining of coordinates a posteriori has several times been discovered
anew (Martin 1967, Usher 1968). Crocco (1972) illustrates its effec-
tiveness for several problems in gas dynamics.
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Pritulo (1969) points out that a parameter can be treated similarly.
The idea of slightly straining a parameter so as to suppress non-
uniformity was invented by Lindstedt (1882) to avoid secular terms in
celestial mechanics and, as mentioned on page 100, was generalized
by Poincaré. Nayfeh (1973) has called this the method of strained param-
eters. Pritulo shows how parameter straining can be introduced a
posteriori in the example of the fourth-order thin-airfoil expansion of
Donov (1939) for plane supersonic flow. Divergence of the approxima-
tion as the free-stream Mach number M becomes large can be sup-
pressed by straining the compressibility factor (M? — 1)V2 so that
each term in the expansion for the pressure coefficient remains
bounded for large M.

Exercise 8.2. Viscous flow past slender paraboloid. The first step of
the solution was given by Veldman (1973). As discussed in Note 4, the
second step involves a failure of the asymptotic matching principle
because of a “forbidden region,” which is avoided by proceeding to
the third step, matching two terms of the Oseen expansion to two
terms of the Stokes expansion.

Exercise 8.3. Wake of axisymmetric body. This problem is the first
step 1n the solution of Viviand and Berger (1964). In the second ap-
proximation, the failure of the vorticity to decay exponentially (p.
131) was shown by Berger (1968) to require, much as for the boundary
layer on a semi-infinite plate (Section 7.11), introduction of a loga-
rithmic term; and then its algebraic companion term is undetermined.
Berger also deduces the form of the third and higher terms. This solu-
tion, and much other work on laminar wakes, is discussed in the book

by Berger (1971).

Exercise 8.5. Transcendentally small terms for circle. As described in
Notes 10 and 11, the solution of this exercise is included in the work of
Skinner (1975).

Exercise 9.3. Near-equilibrium flow over a wavy wall. Tt is instructive
also to show that the method of strained coordinates leads very simply
to a definite result, but it is erroneous because the solution does not
decay at infinity. See Note 7; also Note 6.

Exercise 10.3. Estimate of radius of convergence. The graphical ratio
test of Domb and Sykes, described in Note 15, is the best technique
for making these estimates.

Exercise 10.4. Lift of elliptic wing. As pointed out in Note 13, the
fraction § in Equation (1.6) should be §, and the § in (10.27) should
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be 2. Krienes’s value has been improved to 2.944 + 0.004 by Medan
(unpublished calculations using the method of Medan, 1974).

Exercise 10.6. Critical Mach number for circle. ~ As discussed in Note
2, Simasaki’s series (1.1) has been extended by computer, and the
critical Mach number (for y = I) estimated accurately from that as
well as other methods.

Exercise 10.7. Friction at nose of impulsively started cylinder. The expan-
sion in powers of time has been extended by Collins and Dennis
(1973a). The boundary-layer approximation (3.23) for the friction
near the front stagnation point is

. 1
T~ v 2UY2 x (1 + 1.42442(U,1) — 0.21987(U,1)2

— 0.0127(U;t)° + 0.0254(U,1)* — 0.00566(U,1)>
— 0.00134(U,t)® + 0.00095(U, )T + - - -] (N.3)
Exercise 10.8. Separation on impulsively started circle. 'The extension

of Collins and Dennis (1973a) gives, in the first-order boundary-layer
approximation, the friction proportional to

I + 2.8488 cos 0(Ut/a) — (0.3202 + 0.5592 cos 20)(Ut/a)?

— (0.0767 cos 6 + 0.0246 cos 360)(Ut/a)?

+ (0.0661 + 0.1982 cos 20 + 0.1427 cos 40)(Ut/a)*

— (0.0332 cos 6 + 0.0722 cos 36 + 0.0755 cos 50)(Ut/a)®

— (0.0105 + 0.0285 cos 20 + 0.0414 cos 46 + 0.0052 cos 60)(Ut/a)
+ (0.0117 cos § + 0.0207 cos 360 + 0.0560 cos 50

+ 0.0335 cos 70)(Ut/a)” + - - - (N.4)
Collins and Dennis (1973b) also computed the time-dependent flow

numerically, using a method of series truncation, and found that they
could not continue the integration beyond (Ui/a) = 1.25. Telionis
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and Tsahalis (1973; see also Sears and Telionis, 1975) have also inte-
grated the boundary-layer equations numerically, using a finite-
difference scheme, and at about (Ut/a) = 0.65 discern a singularity
in the interior of the boundary layer that has the properties of the
square-root singularity at the surface in steady separation (Goldstein,
1948, Stewartson, 1958).

n Note 4. The Asymptotic Matching Principle

Occasionally the counting involved in the asymptotic matching
principle (4.36, 5.24) may seem ambiguous; then an alternative ver-
sion of the rule is useful. One may feel uncertain how to count terms,
for example, in the following four situations: (i) if the asymptotic
sequence has gaps (e.g., the series proceeds by integral powers of ¢
except that the coefficient of &2 vanishes identically); (ii) if the asymp-
totic sequences are essentially different for the inner and outer ex-
pansions (e.g., one expansion proceeds by powers of &, the other by
half-powers); (iii) if logarithmic terms arise (e.g., e® log e appears as
well as €"); or (iv) if eigensolutions exist.

In all such cases, uncertainty is avoided by adopting the following
unambiguous version of the rule:

The inner expansion to order A of (the outer expansion
to order §) = the outer expansion to order § of (N.5)

(the inner expansion to order A)//

#

Here A(e) and 6(¢) are any two gauge functions (not necessarily the
same), which may or may not actually appear in the asymptotic
sequences for the outer and inner expansions. Of course this alterna-
tive is equivalent to the original version (5.24) whenever it is clear
how to count terms. Similar alternative rules based on orders rather
than counting have been introduced by Fraenkel (1969b, ¢, pp. 246,
265) and Crighton and Leppington (1973, p. 317).

In proposing the asymptotic matching principle the author in-
tended merely to provide a specific procedure embodying Kaplun’s
ideas, and supposed that it was equivalent to the intermediate match-
ing principle (5.29). However, in an important study of the matching
procedure Fraenkel (1969a, b, c) has shown that the two rules are
significantly different. He points out that the asymptotic rule is easier
to use than the intermediate one, which requires a search for the
range of the intermediate variable and the order of overlap in that
range. Moreover, the asymptotic rule is more economical, because in
certain problems where the overlapping is weak a constant in the
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inner expansion can be found by matching with fewer terms of the
outer expansion than are required with the intermediate rule. Thus
Fraenkel has demonstrated with several examples (Fraenkel, 1969b, c,
Pp- 251, 269) that, contrary to what was widely believed, the asymp-
totic matching principle can be applied to inner and outer expan-
sions that contain too few terms to overlap to the order of the terms
being matched. However, Lagerstrom (1975) points out that this
shortcoming can be circumvented by working with the correction
boundary layer—the inner expansion of the difference between the
full solution and its outer expansion.

Unfortunately, the asymptotic rule can fail when the series contain
logarithms. This has been analyzed by Fraenkel, who has discovered
two restrictions, one or the other of which is to be imposed on the
asymptotic matching principle, depending on how the logarithms
appear. These are no mere mathematical quibbles, for in each case we
now know that ignoring the restriction has led to error in a realistic
problem in fluid mechanics. A majority of the many solutions of
physical problems carried out in the last decade using the method of
matched asymptotic expansions are based on the asymptotic rule. It
is therefore of practical importance to recognize these two restrictions:

[. Don’t cut between logarithms. Fraenkel insists on normalizing ¢ as
the ratio of the inner and outer scales. (We have not always adhered
to this convention; for example, we took the ratio as €2 in Eq. (4.34)
for the round-nosed airfoil, and even as e=1* in Eq. (4.48) for the
sharp-edged airfoil.) Then condition (iii) of his Theorem I (Fraenkel,
1969a, p. 223) serves as a warning that the asymptotic matching
principle may fail if applied to an expansion truncated by separating
terms that differ by less than any power of ¢. In particular, when the
series proceeds in powers of € and of its logarithm, all the powers of
log ¢ multiplying a given power of € should be treated as a single term.

This warning was violated by Proudman and Pearson (1957) who,
as described on page 160, calculated the term of order R? log R in the
Stokes expansion for the sphere while disregarding its companion
term of order R?. Apparently no harm was done in this case, however,
because Chester and Breach (1969) have confirmed that term by ex-
tending the series to one higher power of R (and in so doing have
themselves violated Fraenkel’s warning at the next stage).

On the other hand, Crighton and Leppington (1973) have found
that violating the restriction leads to an erroneous result for the dif-
fraction of long waves by a semi-infinite plate of finite thickness. The
outer expansion has the form
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(}5~({)O+810g8q51+8¢2+8210g28¢3+8210g8¢4
+ &2 ¢y + - - - (N.6)

where ¢ is the ratio of plate thickness to wave length, and hence of the
inner to outer scales. Matching to order ¢ log ¢ as well as to order ¢
gives the correct result; but matching to order €2 log? ¢ yields a ¢, that
is recognized as being incorrect only because this linear problem pos-
sesses a reciprocal theorem that is violated. This trouble is avoided by
matching the three terms in €2 as a block. Crighton and Leppington
discuss the mechanics of this restricted matching principle.

2. Forbidden regions in the purely logarithmic case. The restriction just
discussed cannot be met when, as for the circle at low Reynolds num-
ber (Sec. 8.7), the outer and inner expansions proceed In inverse
powers of log ¢ (or, equivalently, of log ¢ + £). Fraenkel (1969a, p.
226) finds that in this case the asymptotic matching principle (5.24)
is valid unless m and n fall within a certain “forbidden region” whose
shape in the mn-plane can be calculated in the course of solution.

It is convenient to uniformize the counting by agreeing that for
both the inner and the outer expansions the kth term is of order
(log €)= (so that typically the “zeroth-order” term is absent from
the inner expansion). Then in the common case that the inner expan-
sion of the outer expansion is a polynomial in log x of degree N, the
matching holds for |m — n| = N. Fraenkel (1969c, p. 276) illustrates
this restriction with a one-dimensional model of the circle at low
Reynolds number. The forbidden region is just the line m = n, so that
matching can be carried out successfully by choosing, for example,
n=ma1(rn=m— 1)

A more realistic example is the problem in Exercise 8.2 of axisym-
metric viscous flow past a slender paraboloid. For the paraboloid of
nose radius g, separation of variables yields the Stokes approximation

Y~ U Ay(R) B log 7 — 7 + 1) (N.7)

where the Stokes variables are £ = £/a%/2 and i = n/a%/2. The first
term of the Oseen expansion is just the uniform stream, with

o~ % V2 pae (N.8)
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where £ = &/(v/U)V2 and 71 = 3/(v/U)Y2. Matching these deter-
mines the multiplier in the Stokes approximation as A; = (log 1/R )1,
where the Reynolds number is R = Ua/v. The solution has been car-
ried to this stage by Veldman (1973). (This result, with an incorrect
factor A, independent of Reynolds number, was first obtained by
Sampson (1891) by taking the limit of the Stokes solution for an
ellipsoid of revolution.)

'The next term can then be calculated in the Oseen expansion,
giving

V2~ . ~2
¢~§5¢TW+AAMV&«ﬂWa—2U—eﬂ”ﬂ+30<N%

where E| is the exponential integral. (Veldman also gives this result,
but he imposes the surface boundary condition to find the Oseen
approximation, rather than matching.) This can almost be matched
to (N.7) with 4 = 1 and B = 0, but the secondary terms give the
mismatch log 7 = 1. Since log 1 appears only linearly, the asymptotic
matching principle is valid for [m — n| = 1. Thus we are at this stage
in the forbidden region, which is again just the line m = n

As in the case of the circle (p. 163), the higher terms in the Stokes
expansion are multiples of the first, so that the two-term expansion
has the form

1 —
Y~ §U‘12[A1 + A2+ - - 8@ log 72 — % + 1) (N.10)

We have now moved out of the forbidden region, and this matches
perfectly with (N.9), giving 4 =1, B = 0, and ¢ = y — log 2.

Davis and Werle (1972) have calculated an approximation to the
third term of the Stokes expansion that becomes correct far down-
stream, as § » co. They suggest that it is nearly correct for all §, and
confirm this by comparing their numerical solutions with the resulting
expansion for the local skin friction:

[R(1 + &2)/€](1/pU?) = A, — (log 2 — y)A?
—[21log 2 + 72/12 — (log 2 — y)2]A2 + - - - (N.11)

We would expect that, just as for the circular cylinder (Note 15), the
accuracy of the Stokes expansion could be improved by telescoping
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the first two terms into one. This means changing the definition of
the gauge function to A} = (log 2/R — ¥)~1, so that ¢ = 0 in (N.10).
Then Davis and Werle’s approximation (N.11) assumes the simpler
form

[R(1 + £2)/&|(r/pU?) = Ay — (2 log 2 + #2/12)A% + - - - (N.12)

which was given by Mark (1954). This modification does improve the
agreement with numerical results somewhat, but not so dramatically
as for the circle (Fig. N.4).

In the problem of the circular cylinder the log p in Eq. (8.47) means
that the l-term Stokes expansion and the 2-term Oseen expansion
(the inner and outer expansions to order A;) lie in the forbidden
region, which is again the line m = n. Nevertheless, we were able to
match them correctly on page 163, much as Proudman and Pearson
(1957) did, using the asymptotic matching principle. This means
that, just as in the case of powers of ¢ and log e discussed above, violat-
ing Fraenkel’s warnings will not invariably lead to error. (On the
other hand, the Stokes and Oseen expansions to order unity, which
are 0 and 1 respectively, obviously do not match.)

Are Poincaré expansions necessary? Fraenkel’s proof of the restricted
asymptotic matching principle is based on the assumption that both
the outer and the inner expansion are of Poincaré form—that is, of the
form (3.10a), where the coefficients ¢, ordinarily depend on space or
time variables but are independent of ¢, for example,

N

S5 €) ~ ) c,(x) 8,(e) (N.13)

n=1

Sheer (1971) points out that for a sharp-edged airfoil the inner solu-
tion (4.49) is not of this form. He attributes to this fact the apparent
failure of the matching pointed out in Exercise 4.5 when the final
comparison is made in inner rather than outer variables. His remedy
is to work with the logarithm of the velocity, which converts the inner
solution to Poincaré form without significantly changing the outer
expansion. He goes on to show that putting all of the unbounded part
into the first approximation leads to a uniform expansion, so that the
method of matched asymptotic expansions, having served its purpose,
is unnecessary.

Sheer does not discuss the remarkable fact that matching the
velocity itself gives the correct second-order result (4.53) if the final
comparison is made in outer variables, as on page 70. Is this related
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to thf.t fact that the outer expansion does have Poincaré form? We
examine the next approximation, matching three terms each of the
outer (4.24) and inner (4.49) expansions. (However in (4.49) we must
for the semi-vertex angle, replace the thin-airfoil approximatior;
tan~! 2¢ by its exact value 2 tan~1 ¢ for the circular-arc airfoil because
the difference, though only of order &3, makes a change of order &2
through the factor ¢=17*.) Making the final comparison again in outer
variables yields

U, = e‘””U{l + 21-2(2 — log 2 — 2) + 382[10g2 2
T T 72

4
+(——6)log2+6—g+iz+z]+~-~}(N.14)

g T 3

That this is correct is confirmed by expanding the exact solution
quoted in Exercise 4.5. This might tempt us to conjecture that the
asymptotic matching principle remains valid when only one or the
other of the inner and outer expansions is of Poincaré form, provided
the final matching is carried out in the corresponding variables.

. It seems, however, that the resolution of the difficulty is much
simpler. We did not in fact properly apply our matching rule on page
70. The matching principle requires the inner expansion to be ex-
panded for small ¢ and truncated while it is written in outer vari-
ables. We did not carry out that expansion and truncation completely,
because the form of U; was not prescribed at the stage of Egs. (4.52¢)
gnd (4.52d). Consequently, (4.52d) contains some third-order terms
in €2 that should have been eliminated.

The remedy is to work with a specific expansion for U;, which
(4.51d) shows to be U; = A + Be + - - -. Then the rule can be ap-
plied properly, and the discrepancy mentioned in Exercise 4.5 disap-
pears. Similarly, in the next approximation using U, = 4 + Be
+ Ce®* + - - - leads to the correct result (N.14) whether the final
matching is made in outer or inner variables. Thus it appears that, at
least in this example, the expansions need not both be of Poincaré
fo.rm. However, Note 5 deals with examples where the asymptotic rule
fails unless the expansions are cast into Poincaré form.

Note 5. The Theory of Matching

For practical application of the method of matched asymptotic
expansions to specific problems, it is ordinarily most efficient to work
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with limit-process expansions, and to match using the asymptotic
matching principle (Note 4). That is the method followed in this
book, and in most of the examples in the literature. The choice of
technique is certainly a matter of personal taste, however, and Cole
(1968), while using limit-process expansions, always matches them by
taking intermediate limits (Section 5.8). However, it is clear that these
approaches gloss over many subtleties, some of which have practical
implications.

For a deeper understanding of the ideas underlying matching, ex-
pansions characterized by their domains of validity are more funda-
mental than limit-process expansions. They may also be essential for
constructing the expansions in some cases. That is, the idea of apply-
ing limits to the equation and then finding solutions of the resulting
approximate equations is more basic than looking for limits of the
solution. This view, originating in the work of Kaplun and Lagerstrom
(Kaplun and Lagerstrom, 1957, Kaplun, 1957, Kaplun, 1967), has
been set forth fully by Lagerstrom and Casten (1972). The reader
will find there a detailed discussion of the heuristic ideas underlying
the method of matched asymptotic expansions.

In particular, Lagerstrom (1961, pp. 87, 109) has proposed a model
problem (different from that of Fraenkel mentioned in Note 4) that
illustrates the mathematical structure of viscous flow past the circle
and sphere at low Reynolds number:

d*u  n— ldu du du\?

Cuypn = Ldu o due 5T — g —1 -0

Cern Ll B s(Z) 0 W= e
(N.15)

Here n corresponds to the number of space dimensions (2 for the
circle, 3 for the sphere), and the factor 8 is zero for the model of in-
compressible flow and unity for compressible flow. This problem has
been analyzed by Lagerstrom (1961, 1970), Cole (1968, p. 61), Bush
(1971), and Lagerstrom and Casten (1972).

The incompressible model, like the actual incompressible problem
(Chapter 8), can be treated using limit-process expansions. The Oseen
expansion is a regular perturbation (cf. Note 7). In the compressible
model, on the other hand, the Stokes equation is nonlinear, and is
not contained in the Oseen equation. This is the situation in the
actual flow problem as well (Lagerstrom, 1964).

Nonlinearity of the Stokes equation has the further consequence
that the solution cannot be found using limit-process expansions
based on the outer variable r and inner variable r/¢, for they do not
match at all. Instead, one must use an inner expansion characterized
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by its domain of validity, with the inner variable r/7(¢), where n < 1.
Alternatively, Bush (1971) shows that one can use an inner-limit ex-
pansion with the inner variable changed to (log 1/r)/(log 1/¢).

The same situation arises in a turbulent boundary layer. Millikan
(1939) deduced from physical arguments that there are two different
regions, a thin layer near the wall where viscous stresses are important,
and a thicker outer layer where only Reynolds stresses are significant.
For incompressible flow, this idea has been formalized as an asymp-
totic theory for Reynolds number tending to infinity by Yajnik (1970)
and Mellor (1972). Bush and Fendell (1972) have extended the anal-
ysis to higher approximations using eddy-viscosity models. For com-
pressible flow, however, Melnik and Grossman (1974) and Adamson
and Feo (1975) find that limit-function expansions do not match.
Again the remedy is either to consider domains of validity or to make
a change of variable that leads to matching.

Note 6. Alternative Rules for Composite Expansions

J. Ellinwood (unpublished) has observed that the additive rule
(5.32) for composition is the basic one. It can be used to generate a
very general family of alternative rules. If F(f) is any sufficiently
smooth functional (generally without poles) that has an inverse F~1(/),
then a composite is given by

Jimm = FEUF(fm) + B(R0) — FIGE™), ™)) (N.16)

The additive rule corresponds to F(f) = fand the multiplicative rule
(5.34) to F(f) = log f.

The rules corresponding to F(f) = f2, f; log ; 1/f, and 1/f? yield a
monotonic sequence, approximately evenly spaced, at any fixed argu-
ment; and this variation might be exploited to improve the agree-
ment with exact or experimental results. The composite solution
(9.66) that was formed by inspection for hypersonic flow past a
blunted wedge corresponds to F(f) = log(df/dy), where only the
constant of integration need be fixed by inspection.

Schneider (1973) has pointed out that the multiplicative rule in-
volves the risk of dividing by zero, in which case the result—far from
being uniformly valid—becomes infinite within the region of interest.
In fact, he shows that this happens in just the example treated on
page 96, the thin elliptic airfoil. The multiplicative composite (5.36)
is valid on the surface, but ahead of (or behind) the airfoil it breaks
down even on the dividing streamline.
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In the notation of Section 4.9 (with s the distance downstream from
the leading edge of an ellipse of chord 2 and thickness ratio &), the
exact speed on the x-axis is found by conformal mapping as

L. 1(1—6 L= ) s<0  (N.17)
U 1-—e V=25 + 52 + g2

The outer and inner expansions can be extracted from this by expand-
ing for small ¢ in terms of s and S = &2, respectively. Thus it is seen
that the denominator of the multiplicative rule vanishes at about half
a nose radius ahead of the edge. For example, the 2-term outer expan-
sion of the 1-term inner expansion is 1 — &(—2s)~1/2, which vanishes
at s = —e2/2.

Similarly, W. Reddall (unpublished) found in working Exercise 9.3
that the multiplicative composite formed from two terms of the outer
and one term of the inner expansion has a denominator that vanishes
at (1 — A)ey = 2. To avoid this danger, the additive rule (5.32) should
ordinarily be preferred, as it largely has been in the literature, despite
some attractive features of the multiplicative rule.

At the stagnation point of the ellipse, with two terms of the outer
expansion and one of the inner, Ellinwood’s alternative composites
based on /2, f, and log f give velocities of order e!/2, ¢, and 0, respec-
tively. This illustrates that different composite expansions may have
different accuracies, and that the error may exceed that of either of
the constituent expansions.

Note 7. Utility of the Method of Strained Coordinates

Although the method of strained coordinates (Chapter 6) has now
been applied to a considerable variety of problems in fluid mechanics
(and a few in other fields), the question of when it can be relied upon
is not settled. Mathematicians have studied the method only for
ordinary differential equations (e.g., Comstock, 1972), which provides
scant guidance for partial differential equations. From time to time a
solution previously calculated by straining is found to be erroneous by
a worker using a more pedestrian but reliable method (e.g., Jischke,
1970).

It Zeems amply confirmed that no difficulties arise if the governing
equations are hyperbolic, as they are in the majority of applications.
The generalization of Lin (p. 100) that consists in successively refin-
ing two families of characteristic lines has been further developed by
Oswatitsch (1962a, b) as the analytic method of characteristics, and ap-

Note 7. Utility of Strained Coordinates 229

plied by him and his colleagues to a number of problems in gas
dynamics (cf. Stuff, 1972).

The straining must, however, be carried out for the physical
(“primitive”) variables—velocity, pressure, temperature, etc.—rather
than for such constructs as the velocity potential or stream function.
For example, treating the problem of supersonic flow past a thin air-
foil using the perturbation velocity potential (6.28) rather than the
streamwise velocity increment (6.30) yields only half the correct
straining function in Eq. (6.35).

Strained coordinates cannot generally be applied to parabolic equa-
tions, as in boundary-layer theory. However, they prove effective in a
wake. Crane (1959) showed that straining provides an attractive
alternative to the logarithmic terms that Stewartson (1957) had to
introduce into Goldstein’s (1933) expansion for the laminar wake far
behind a flat plate in order to maintain exponential decay of vorticity.
(This requirement, discussed on page 131, would appear to be dif-
ferent from Lighthill’s principle of Eq. (6.1), but non-exponential
decay leads to singularities at the next step.) Berger (1968) shows
that straining succeeds in the same way for the axisymmetric far wake.

The situation is similarly unclear for elliptic equations. The criti-
cism (p. 119) that Lighthill’s success with a round-nosed airfoil in
incompressible flow cannot be extended to higher order has been
refuted by Bollheimer and Weissinger (1968) and Hoogstraten (1967),
who show that it is only necessary to strain both coordinates slightly,
or in fact the single complex variable x + i5. However, Hoogstraten
finds that difficulties persist for other nose shapes.

Although the equations of supersonic flow are hyperbolic, they
become elliptic inside the Mach cone in conical flow. Lighthill
(1949b) found the conical shock wave using strained coordinates; but
Melnik (1965b) emphasizes that the method fails near the triple point
where the plane shock wave from a supersonic edge meets the nearly
circular conical wave from the vertex. There he shows that the
method of matched expansions can be used to join five different
boundary layers (which were studied earlier by Bulakh, 1961).

Melnik also shows how the vortical layer on a cone in supersonic
flow can be matched directly to the outer flow. (He gives a useful
comparison with other less accurate solutions, including that of
Munson, 1964.) However, in the hypersonic thin-shock-layer approxi-
mation he finds (Melnik 1965a) that there is no overlap until the
method of strained coordinates is applied to minimize the nonuni-
formity of the outer solution near the surface (as an alternative to
introducing an intermediate third region). This idea of combining
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the method of strained coordinates with the method of matched
asymptotic expansions has been applied also to two problems in gas
dynamics by Crocco (1972) and to a hypersonic boundary layer by
Matveeva and Sychev (1965).

Note 8. Flat Plate at High Reynolds Number; Triple Decks

Much effort has been devoted in the past decade to improving the
solutions for viscous flow past the semi-infinite flat plate and the finite
plate at large Reynolds number.

The eigensolutions discussed in Section 7.6 have been studied fur-
ther by Murray (1965, 1967), Brown (1968), and Ting (1968). A solu-
tion for the semi-infinite plate can be evaluated by how well it
predicts the coefficient C; of the first of these eigensolutions in the
expansions (7.46), (7.47) for skin friction far downstream, as well as
the undetermined constants in the Stokes expansion (3.24) near the
leading edge, which (with those constants redefined) gives the local
skin friction as

¢;=AR 2+ BRV? %ﬁ R, + -+~ (N.18)

The most reliable values are given by Botta and Dijkstra (1970) who,
refining the procedure of van de Vooren and Dijkstra (1970), carried
out a careful finite-difference solution of the Navier-Stokes equations
in parabolic coordinates, using three different mesh sizes, and being
guided by all that is known of the analytical structure of the solution.
They were only able to estimate 2.2 < C; < 2.5, but found 4
= 0.75475 + 0.00005 and B = 0.041. [A less detailed finite-difference
solution (Yoshizawa, 1970) gave C; = 1.6, 4 = 0.748, and B = 0.044.]
This value of A means that the skin friction near the leading edge is
14 per cent higher than the Blasius value.

" Finite plate. Our understanding of viscous flow past a finite flat plate
(Section 7.9) has been revolutionized by the simultaneous discovery
of Stewartson (1969) and Messiter (1970) that at high Reynolds num-
ber the flow near the trailing edge has a compound structure that
Stewartson calls the triple deck. It comprises a region around the trail-
ing edge whose extent is of order R=%8 times the length of the plate,
and which matches upstream with the classical Blasius solution and
its associated outer flow and downstream with the two-layered wake
analyzed by Goldstein (1930). It consists of three layers, in each of
which the Navier-Stokes equations can be approximated in a different
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way, as shown in Fig. N.1 (which is a composite of the drawings of
Messiter and Stewartson). There is also a small circular core in which,

Upper deck;
potential flow

Potential fiow

Outer Goldstein wake

Inner Goldstein waoke

“'}?-l R-38 p-ile p-3/4
Fig. N.1. Schematic picture of matching regions for flow past finite flat plate at high
Reynolds number; primary regions shown by solid lines and secondary regions by dashed lincs.

just as in the corresponding vicinity of the leading edge, the full equa-
tions apply. (These, and another circular region of size R~2 about
the trailing edge, are shown dashed because they affect only higher
approximations. )

This structure contributes a correction to the Blasius drag that is
of order R~"8 and hence slightly more important than the displace-
ment effects of order R~ calculated by Kuo (p. 136) and Imai (p.
138). Thus Equation (7.40) is corrected to

1.328 2.661 1 1
‘F T Rizz + R + O<R R/6 R5/4) (N.19)

The coefficient 2.661 was evaluated numerically by Melnik and Chow
(1975); Jobe and Burggraf give instead 2.694, and Veldman and van
de Vooren (1974) find 2.651 = 0.003. Of the subsequent terms, that of
order R~1 arises from the trailing-edge region of size R=38 as well as
from the displacement effects, that of order R~/ from the region of
size R=172 and that of order R4 from the region of size R34,

That last small region was treated approximately by Stewartson
(1968), and later Dijkstra (1974) solved the full Navier-Stokes equa-
tions numerically. They both found that the Stokes solution (3.24)
of Carrier and Lin (1948) applies locally at the trailing as well as the
leading edge. Dijkstra evaluated the coeflicient of that square-root
singularity in local skin friction, but was unable to find the coefficient
of the term in the drag (N.19) of order R—>/4.

Jobe and Burggraf find that the two-term approximation (N.19)
agrees unexpectedly well with both experimental measurements
(Janour, 1947) and numerical solutions of the Navier-Stokes equa-
tions (Dennis and Dunwoody, 1966, Dennis and Chang, 1969). This
means that the subsequent terms must either have much smaller
coeflicients than the first two, or tend to cancel one another.
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The triple-deck structure has been extended to a plate at an angle
of attack of order R=1/16 by Brown and Stewartson (1970), to an air-
foil with a finite trailing-edge angle of order R—1* by Riley and
Stewartson (1969), and to a three-dimensional wing with a pair of
eddies at the trailing edge by Guiraud (1974).

Separated flow. The multistructured boundary layer that Stewartson
calls the triple deck was discovered at the same time for the flat plate
and for the region of free interaction near a separation point in super-
sonic flow. The latter problem was afialyzed independently by
Stewartson and Williams (1969) and by Neiland (1969), who show
that the primary regions have the same dimensions as in Fig. N.1.
Neiland (1971) later matched that local solution to a four-layered
region of separated flow farther downstream, and found agreement
with experimental measurements of the “plateau” pressure.

The same structure persists near separation at hypersonic speeds if
the hypersonic interaction parameter x = M/R'/? is small; but other-
wise Neiland (1970) has shown that the region of free interaction is of
the order of the length of the body. It depends on an eigensolution
that grows from the leading edge as a high power of distance. Kozlova
and Mikhailov (1970) show that a similar non-uniqueness arises for
an infinite yawed wing, and in the case of an infinite triangular wing
permits the flows on the two halves to meet smoothly on the center-
line.

Sychev (1972) has explained how the structure of Fig. N.1 applies
also to separation from a smooth body in incompressible flow. An
adverse pressure gradient of magnitude R'® acts over the interaction
region of length R=%/8, and in the limit the local pattern is the inviscid
free-streamline flow that has bounded curvature. Sychev shows that
this structure is compatible with flows upstream and downstream,
which have also been studied by Messiter and Enlow (1973). Messiter
(1975) discusses how this model, though formally self-consistent, is
not yet complete because of our ignorance of the global structure of
the recirculating wake, which could, for example, induce an infinite
sequence of vortices below the separation streamline.

_All these problems, and others involving multistructured boundary
layers, have been comprehensively surveyed by Stewartson (1974).

Note 9. Extension of the Idea of Optimal Coordinates

Kaplun (1954) limited his study of the role of coordinate systems
in boundary-layer theory to incompressible, steady, plane flow past a
solid body without separation, and with an irrotational oncoming

Note 9. Extension of Optimal Coordinates 233

stream. He promised to remove those restrictions in a later paper,
but did not live to write it.

Legner (1971) has shown that Kaplun’s rule (7.56b) for constructing
optimal coordinates applies unchanged to axisymmetric flows, to on-
coming streams containing vorticity, to boundary layers with no
adjacent walls, such as jets and wakes, to free-convection boundary
layers, to compressible fluids, and to uncoupled and coupled thermal
boundary layers. It is implicit in his reasoning that Kaplun’s correla-
tion theorem (7.50b) also applies to all those flows. In addition,
Legner has extended the rule for constructing optimal coordinates to
unsteady boundary layers, and to three-dimensional ones in terms of
Clebsch’s pair of stream functions. He gives examples for many of
these situations.

Kaplun also limited consideration to the first-order boundary
layer plus the resulting outer flow due to displacement. We have given
the second-order correlation theorem in Exercise 7.4, and it clearly
applies also to the first group of problems just mentioned, and could
no doubt be extended to the second group.

Legner has also extended Kaplun’s rule for optimal coordinates to
arbitrarily high order. Let the solution be carried out in any con-
venient coordinate system x, y. The outer expansion will be a con-
tinuation of the form (7.48a):

Y~ () RTV2(x ) + Ryl )
+ R332, (x, p) + - - - (N.20)
Then optimal coordinates are given by the generalization of (7.56b)
Eopt (% ) = Filibo(x p) + R7V2 4g(x, p) + R71y(x ) + - - ]

Nopt (. ¥) = Y1(x% ») Foldo(x p) + R7V245(x ) + - - -]
(N.21)

If logarithms of R appear in the outer expansion, they are simply to
be included here in the obvious way.

Legner has verified this rule to second or higher order in a number
of specific examples. Davis (1974) points out that, in contrast to
Kaplun’s result, this rule is not completely general. However, he
adopts it in showing how optimal coordinates can prove advantageous
in numerical solution of the Navier-Stokes equations. On the other
hand, L. E. Fraenkel (unpublished) has questioned the demonstration
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that (N.21) yields optimal coordinates. Thus the extension to second
and higher order remains to be resolved.

The “shrinking rectangular” coordinates of Fig. 7.8 are an unneces-
sarily artificial choice to illustrate that the boundary layer may not
contain even the basic outer flow. Polar coordinates, which are an
attractive system for the semi-infinite plate, also display this total lack
of optimality.

Note 10. The Sphere and Circle at Low Reynolds Number

Chester and Breach (1969) have, in a difficult computation, con-
tinued the analysis of Proudman and Pearson (1957) to include one
higher power of Reynolds number. Thus they extend the series (1.4)
for the drag coefficient of a sphere by two terms to find

67 3 9 9 9 5 323) 9
= — = — —y + > log 2 — R
Cp 7 [1 + 8R + 4OR log R + 40(}/ 5 108 360
+ é—Z)RB log R + 0(R3)] (N.22)
Here v = 0.5722 . . . is Euler’s constant.

This result is disappointing, because comparison with experiment
suggests that the range of applicability has scarcely been increased.
Chester and Breach conclude that “the expansion is of practical value
only in the limited range 0 < R << 0.5 and that in this range there
is little point in continuing the expansion further.” Below R = 0.3,
however, Dennis and Walker (1971) find that it gives a better ap-
proximation than any other asymptotic solution to the drag that they
calculate numerically.

This limited utility contrasts with that of regular perturbation ex-
pansions, which have recently been found actually to converge for
Reynolds numbers considerably larger than unity. For example,
Kuwahara and Imai (1969) have calculated by computer (cf. Note 2)
eight terms of a power series in R for the steady plane flow prosiuced
inside a circle by tangential motion of the boundary, and estimate
convergence up to about R = 32 in three different cases. Again,
Hoffman (1974b) has computed 17 terms for the self-similar flow be-
tween infinite concentric rotating disks, and finds convergence up to
R = 15 for the case of one disk fixed and R = 42 for equal contra-
rotation.

In an appendix to the paper of Chester and Breach, Proudmz.m
suggests that the limited utility of their series is due to the unsuit-
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ability of the drag for expansion in terms of Reynolds number, and
attempts to recast it into more appropriate form. Clearly some such
reinterpretation of the terms containing log R is necessary in order
that the result be useful for R greater than unity. (Cf. Note 15.)

We may ask whether Chester and Breach’s last term is correct,
since they have violated the warning of Fraenkel (1969a), discussed in
Note 4, against separating like powers of R that differ only by powers
of log R. To be sure, their solution itself shows that Proudman and
Pearson happened to escape unscathed in calculating the term in R2
log R while neglecting that in R% However, it is just at the next stage
that ignoring Fraenkel’s warning is known (Note 4) to lead to error
in the simpler problem of diffraction by a thin semi-infinite plate.

It was mentioned on page 155 that whereas the Stokes approxima-
tion is a singular perturbation, the Oseen expansion appears to be a
regular one. [Kaplun (1957) observed that this is a coincidence that
disappears in compressible flow, where the Stokes approximation is
nonlinear (Lagerstrom, 1964).] The second approximation for a sphere
was calculated by C. R. Tllingworth in 1947 (unpublished), who found
for the drag coefficient

o7 3 9
Cp=-+(1+ =R+ =R?1 . 2
D R(l 8R 4OR og R + 0.1333 R

+ BLR3 10g R — 0.0034 R? + - - ) (N.23)
320

Thus iterating on the solution of the Oseen equations extends the

agreement with the Navier-Stokes drag from relative order R to R?

log R, and subsequent iterations would no doubt produce further

agreement.

Separated flow. Dorrepaal, Ranger, and O’Neill (1975) have dis-
covered that the Stokes approximation is rich enough to predict
separation on a finite body, provided it is concave. Furthermore,
Ranger (1972) shows that in the diverging Jeffery-Hamel flow be-
tween plane walls the Reynolds number for separation is predicted
within three per cent by two terms of the Stokes expansion, and for
the channel of 45-degree half angle to within one and one-half per
cent by four terms. In that problem the Stokes expansion is a regular
perturbation, proceeding in powers of Reynolds number.

This suggests that it is no coincidence that in the singular perturba-
tion problem of the sphere the standing eddy is described well by the
two-term Stokes expansion, as shown in Figs. 8.3 and 8.4. [The
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Reynolds number of 8 (based on radius) that it gives for the onset of
separation may also be compared with the recent values of 10 from
finite-difference solution of the Navier-Stokes equations (Pruppacher,
Le Clair, and Hamielec, 1970), 10.25 from series truncation (Dennis
and Walker, 1971), and 8.5 from flow visualization (Payard and
Coutanceau, 1971).] However, Eq. (8.38) for the Reynolds number at
separation can be extended, using the solution of Chester and Breach
(1969), to give

1—%R+4%R2(logzz+%1og2+y+ﬁ)+0(R3logR)=0

840
(N.24)

and Ranger (1972) points out that this again has no real root, nor does
the result of including the term in R3 log R. Once more it seems that

the logarithm needs reinterpretation. . .
The solution of Skinner (1975) provides a corresponding equation

for the circular cylinder:

1 1’ . e .

Tpef1 - 3 o 3y =0 N.25
— %R (1 14A1 + ) + O(R?) ( )
where A; = (log 4/R — v + 3)~1 Two terms give separation at
R = 1.12, and three terms at R = 1.0, which may be compared with
the value 2.88 computed by Underwood (1969) using series trunca-
tion (and Yamada’s value, quoted on page 156, of 1.51 for th'e Oseen
approximation). This rough agreement seems satisfactory, since the
quantity A, that is assumed small is then equal to 0.8.

Note 11. Transcendentally Small Terms

A perturbation solution that yields a formal series in powers of
e will never include such exponentially small terms as ¢~1/*. An ex-
ample showing how they may be numerically important is the asymp-
totic expansion (Olver, 1964)

f‘ﬂ cos ntdt~—72ze—" + (_)n_l[ 27 1

o 2+ 1 (w2 + 1)2n?
— 24‘7TL2-:——1———1— + - - ] as n>00 (N.26)
(w2 + )*nt
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Even at n = 10 the exponentially small term contributes 15 per cent
of the total. Dingle (1973) has persuasively argued the case for secking
a “complete asymptotic expansion,” including any sets of exponen-
tially small terms that may be present.

Regular perturbations seem usually to be free of such terms. For
example, each of the series discussed in Notes 2 and 10 that has been
extended to high order by computer appears to represent an analytic
function of the perturbation quantity, having a finite radius of con-
vergence in the complex plane. On the other hand, Terrill (1973)
has shown that in the singular perturbation problem of laminar flow
through a porous pipe at high Reynolds number, the first set of ex-
ponentially small terms is needed to explain the nature of the solu-
tion. A numerical computation showed that there are dual solutions
for R > 9.1 and none for 2.3 < R < 9.1. Matching a boundary layer
to the inviscid core in conventional fashion gave only a single solu-
tion in powers of R=!. However, including terms in e—% yields dual
solutions for R > 9.1 and none for 3.3 < R < 9.1, in remarkable
agreement with the numerical results. Likewise, Adamson and Richey
(1973) found exponentially small terms essential for treating transonic
flow through a nozzle with shock waves.

Bulakh (1964) has included exponentially small terms in the outer
expansion of the boundary-layer solution for converging flow between
plane walls, and checked with the exact Jeffery-Hamel solution. He
shows that such terms will arise also in the higher-order boundary-
layer solution at a plane or axisymmetric stagnation point, and in
other problems.

In the “purely logarithmic case,” where straightforward matching
yields outer and inner expansions in powers of (log 1/&)~! or (log
K/e)™1, terms of order ¢ and higher powers often appear. As men-
tioned on page 165 (see also Exercise 8.5), such transcendentally small
terms were discussed tentatively by Proudman and Pearson (1957)
for flow past a circle at low Reynolds number. Skinner (1975) has sys-
tematically examined the first two sets of transcendentally small terms
in that problem. He finds that terms in R affect the symmetry of the
flow pattern significantly even at R = 0.025, but do not contribute to
the drag. Terms in R? extend Kaplun’s result (8.49) for the drag coef-
ficient to

40 :
Cp~ F{Al 087 A7 + 0(AY)

_ 3_12132[1 _ %Al + O(Alz)} + 0(R4)} (N.27)
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However, it is clear from Fig. 8.5 that at least for R > 0.4 this correc-
tion is in the wrong direction, no doubt because it is smaller than the
unknown term of order A% in Kaplun’s expansion.

Note 12. Viscous Flow Past Paraboloids

Paraboloids enjoy many simple and remarkable properties in fluid
mechanics, in both potential and viscous flows. We have seen in Sec-
tions 4.6, 4.8, 4.9, 10.6, 10.8, and 10.9 how they serve as models for
more complicated flows, or as elements in their solution.

Laminar flow along the axis of a parabolic cylinder has been calcu-
lated numerically, as a generalization of the flow past a semi-infinite
plate, by several of the groups of workers cited in Note 8. Dennis and
Walsh (1971), Davis (1972), and Botta, Dijkstra, and Veldman (1972)
independently solved the Navier-Stokes equations in parabolic co-
ordinates by finite-difference methods over the range of Reynolds
number from zero, corresponding to the flat plate, to infinity, cor-
responding to Prandtl’s boundary-layer approximation. The three
solutions give the same local skin friction to within a fraction of a
per cent. A striking conclusion is that second-order boundary-layer
theory, as represented by the friction near the leading edge (Fig. N.2),
is of little practical utility, for it departs rapidly from the exact solu-
tion as the Reynolds number decreases.

/st-order boundary- - - .. - <. <. --
1.2 — layer theory
=
2
7/
1.0 = Numerical / ;
solutions /° /
/
Ra\/2_ T
(‘2—'> 502 .8 = 2rd-order boundary-
x/ P layer theory
6 =
Stokes limit, R=0 (numerical)
4 } ] ] | |

y / 0 102 0% w0t 10°

. Ua
R=—

Fig. N.2. Skin friction at leading edge of parabolic cylinder.
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Werle and Davis (1972) have calculated numerically the boundary
layer on a parabola in asymmetric flow. They inevitably encounter
thfi square-root singularity of Goldstein (1948) whenever the skin
friction vanishes.

The expansion at low Reynolds number for axisymmetric flow past
a paraboloid of revolution is discussed in Note 4. Davis and Werle
(1972) and Veldman (1973) have solved the Navier-Stokes equations
numerically over the whole range of Reynolds number.

Note 13. Lifting Wing of High Aspect Ratio

Kerney (1972) has discovered that the inte i

( grals in Eq. (9.15) were
evaluat'ed incorrectly by Van Dyke (1964b) for the elliptic wing),. The
expression (9.18) for the circulation is to be replaced by

I 2 4 log A3 — 2z
I _,_2 “4logds-2:? 4 1[5 222
r, A 7% A? 1—z2+PP§+Wz+1—ZZ
~ log(l — 2%) — log 2(1 — 22)
1 — 22
_3—22210 7
.2 gm] (N.28)

Integrating this changes the result (1.6) for the lift-curve slope to

dc,, 2 16logAd | 4(9
L — - 1
Jo 277[1 1 772 A2 +P(§+W2_410g W)P'*‘ .t ]

(N.29)

Correspon.dingly, when this is recast by analogy with Prandtl’s result
(9.1a) it gives, in place of (10.27),

ac, 27

da 2 16 9\ 1
1+ 54+ = - )
y 772(log A 8)/12

(N.30)

T‘hese correqted results are compared with lifting-surface theory in
Fig. N.3, which replaces Fig. 9.4. Krienes’s results from lifting-surface
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theory have been replaced by the following refined values calculated
by R. T. Medan using the method of Medan (1974):

A: /7 2/ 8/7 16/m
dC,/da: 0.496 + 0.002 0.969 + 0.006 2.944 + 0.004 4.151 + 0.004

together with the value 1.7900230 found by Jordar} (1971.) for the
circular wing (4 = 4/). Correcting the error has slightly improved
the agreement at high aspect ratio, while worsening it at low values.

6 — 3rd approx.
(N.29)
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Fig. N.3. Lift-curve slope of elliptic wing (correction of Fig. 9.4).

Germain (1967) has suggested an alternative recasting of (1._6) that
is better for small aspect ratio 4. When corrected for the error in (1.6)

it becomes

Ay 2m N.31)

do 2 + 161 log(1 + me=%84)

A 7w2A?
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Fig. N.3 shows that this version provides a very close approximation
over the whole range of A. For small values it gives 1.72 A, compared
with the exact limit of (7/2)4 = 1.57 4 from slender-wing theory.

Thurber (1965) has treated the more general case of a wing of
smooth symmetrical swept-back planform, and finds that the loga-
rithm of the aspect ratio then appears in the second rather than the
third approximation. Thus the circulation has, instead of (9.15), the
form

% -1+ loi Ae) + %fz(z) +o (N.32)

and Thurber gives expressions for evaluating the functions f; and Ja
in terms of the geometry of the planform.

Kerney (1971) and Tokuda (1971) independently analyzed the
straight wing with a jet flap. However, their results differ, and the
discrepancies have not yet all been resolved.

Note 14. The Method of Multiple Scales

This book is relatively strong on the method of matched asymptotic
expansions, but weak on the method of multiple scales (Sec. 10.4).
The reason is that multiple scales were Jjust being developed when it
was written. That technique has flourished in the last decade, so as to
be second in importance only to matched expansions for fluid me-
chanics. It is not possible to redress the balance in these Notes; we
must refer the reader elsewhere.

Cole (1968) devotes a chapter to what he calls “two-variable ex-
pansion procedures,” but gives no applications to partial differential
equations, and the same is true of the useful article by Kevorkian
(1966). The most complete account is Chapter 6 of Nayfeh (1973).
He distinguishes three variants of the method:

1. The many-variable or derivative-expansion method. One works with
(the first few of) an unlimited number of successively slower
simple scales, for example,

X, = x X, = ex, Xy = &2 I (N.33)

2. The two-variable expansion method. The slower scale is simple, and
the faster scale slightly stretched (linearly), for example,

Xy= (1 + coe? + ¢ + - - 1) X, = ex (N.34)
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No term in ¢,¢ is ordinarily needed in X because it is accounted
for by X,.

3. The generalized method. The slower scale is simple, and the faster
scale strained nonlinearly, for example,

Here again examples suggest that the term go(x) could be
omitted.

As a matter of fact, most of the problems in fluid mechanics that have
been solved using the method of multiple scales require only. the
primitive version with just two simple scales, say x and ex, either
strictly or because the expansion has been carried only to lovy order.
Some typical recent examples are Hinch and Leal (1973), Grimshaw
(1974), and Nayfeh and Tsai (1974). .

Still other variants are encountered in the literature. Levey and
Mahony (1968) slightly stretch the slower rather than the faster scale:

X, = x X, = ex(1 + die + doe? + - - +) (N.36)
and Peyret (1970) slightly stretches both:
Xy = x(1 + cqg + cpe2 + - - 1),
X, = ex(1 + dye + dye® + - - ) (N.37)

Any problem that can be solved by matched expansions can also
be solved by multiple scales, though less efficiently. The method of
multiple scales is therefore reserved for problems where matched ex-
pansions do not apply, typically problems involving slowly modulated
oscillations or waves.

Some writers mistakenly suggest that the method of multiple scales
yields results valid over an indefinitely long range. In general, the
solution is valid only to x = O(e~1) if the short and long scales are x
and ex. An example is the ‘“aging spring” (Cheng and Wu, 1970),
governed by the equation

¥+ettx=0 (N.38)

where the solution by multiple scales holds only for e!/? < 1.
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Note 15. Analysis and Improvement of Series

Since this book was written the author has learned several ways, in
addition to those discussed in Sections 10.6-10.8, for improving the
utility of a perturbation series. These apply mostly to regular pertur-
bations, where the solution is found (aside perhaps from a multiplica-
tive function) as a formal power series in the perturbation quantity.
Then the power of complex analysis can be brought to bear by con-
sidering the perturbation quantity in the complex plane, even though
it usually has physical significance only for positive real values.

For power series we thus have a battery of devices that can be used
(Van Dyke, 1974) to unveil in part the analytic structure of the solu-
tion, and then exploit that knowledge to increase the accuracy of the
series or extend its range of validity. Together with the growing use
of the computer to calculate many terms (Note 2), this process of
analysis and improvement provides a three-step program for treating
regular perturbations (Van Dyke, 1976):

1. Extend the series to high order by delegating the routine
arithmetic labor to the digital computer.

ii. Examine the coefficients to reveal the analytic structure of the
solution in the complex plane of the perturbation quantity.

iii. Transform the series as suggested by that structure.

This semi-numerical program represents, at least for certain simple
problems, a more effective use of the computer than finite-difference
or other purely numerical schemes. Greater accuracy can be achieved
in shorter computing times, and the solution is found as a function
of the perturbation quantity, rather than for just a few fixed values.
Complete success consists in starting with an expansion predicated
on vanishingly small values of a perturbation quantity, and recasting
the series to yield accurate results over the entire range of physical
interest. Two such triumphs are discussed in Note 2: Schwartz’s (1974)
recasting of Stokes’s series to render it convergent for the highest water
wave, and Van Dyke’s (1970) transformation of Goldstein’s series for
the Oseen drag of a sphere at low Reynolds number, giving three-
figure accuracy at infinite Reynolds number.

Singular perturbation series, especially those involving logarithms
of the perturbation quantity, often seem to cry out for improvement,
but no general approach is known. In the “purely logarithmic” case,
where the expansion has the form
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the first two terms can be telescoped into one, giving

+ + (N.40)
log K/e  (log K/¢)3

Se) =

with K = ¢7B/4, As mentioned on page 163, Kaplun chose this form
(Eq. 8.49) for the drag of a circular cylinder at low Reynolds. number,
whereas Proudman and Pearson (1957) used the first form. Figure N.4
(which should be compared with Fig. 8.5) shows that this modification
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Fig. N.4. Effect of telescoping terms for drag of circular cylinder at low Reynolds number.

greatly improves the accuracy at any stage. In certain linear prqblem:s,
and for special geometries, an infinite number of terms can in this
way be telescoped into one, as Batchelor (1970) has pointed out for
Stokes flow past a slender particle.
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In the case of products of powers of ¢ and its logarithm, we know
of only two attempts at improvement: our recasting (N.30) of the
series (N.29) for the lift-curve slope of an elliptic wing by analogy
with Prandtl’s first-order result (9.1a), which was further recast by
Germain into the form (N.31); and Proudman’s proposed reinterpre-
tation (Note 10) of the series (N.22) for the drag of a sphere at low
Reynolds number.

The nearest singularity; Domb-Sykes plots. The most useful way of
analyzing the structure of a power series through its coefficients is to
investigate the nature of the nearest singularity in the complex plane
of the perturbation quantity. First, the direction of the nearest
singularity is revealed by the pattern of signs. If the terms of the series
sooner or later settle down to a fixed sign—all positive or all negative—
as appears to be the case in Egs. (1.1) and (10.29), the singularity lies
on the positive real axis. A particularly well behaved example dis-
playing this pattern is the series of Howarth (1938) for the skin friction
in a laminar boundary layer with decreasing external speed given by
U= Uyl — x/8)):

¢ = iRI—1/2[1.328242 — 1.02054(x/1) — 0.06926(x/{)2

— 0.0560(x/1)% — 0.0372(x/1)* — 0.0272(x/1)>
— 0.0212(x/1)® — 0.0174(x/1)" — 0.0147(x/1)8
-] (N.41)

More often the signs alternate, as in Eqs. (1.3), (1.5), (1.7), (10.21),
and (10.22), and this means that the singularity lies on the negative
real axis. Other more complicated patterns are occasionally encoun-
tered, and can be interpreted similarly.

The distance to the nearest singularity—that is, the radius of con-
vergence—can be estimated by graphical application of the
d’Alembert ratio test, according to which the power series

fle) =) e (N.42a)
has radius of convergence
o e, — 1
gy = lim|2 (N.42b)
n->00 Cn
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A straightforward plot of |¢,_,/¢,| versus n is ineffective, as illustrated
for Howarth’s series (N.41) in Fig. N.5a. Instead, Domb and Sykes

Lo l=— (0.9585)"'
1.0 - 0.9585 —>
Cn
Cn-1 - [ B
C/I
1 1 i o ]
0 . 3 0 1.0
n
-1.0 -
(a) -1.0 L (b)

Fig. N.5. Graphical ratio test for Howarth’s series (N.41). (a) Straightforward plot. (b}
Domb-Sykes plot.

(1957) recommend inverting both scales, plottmg |64/ Cp_q| versus 1/n.
This has the obvious advantage of requiring extrapolation to the
origin rather than infinity. More important, the extrapolation is often
nearly linear, as in Fig. N.5b. The reason for this is that if

(eg £ €)%, a*0,1,2, - -
f(¢) = const X { (N.43a)
(¢p £ €)% log(ey £ &), a =0,1,2, - - -

then

Cu _ xl(l _ LA "‘) (N.43b)

Cn—1 €9 n

so that the Domb-Sykes plot is straight. It seems that in many physical
problems the nearest singularity starts with this algebraico-loga-
rithmic form, so that the plot is asymptotically straight. Then the
radius of convergence is readily estimated as the reciprocal of the
intercept at 1/n = 0. In Fig. N.5b that value clearly corresponds to
the singularity at the separation point, which is known from nu-
merical calculations (Leigh, 1955) to lie at x// = 0.9585. At the same
time the nature of the nearest singularity is revealed by the slope of
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the asymptote Thus Fig. N.5b clearly shows a slope corresponding to
a = %, and this agrees with the local analysis of Goldstein (1948) and
Stewartson (1958), which shows a multiple singularity at the separa-
tion point dominated by a square root.

The Domb-Sykes plot is seldom so straight as in this example.
Other weaker or more distant singularities can make it curved,
kinked, oscillatory, zig-zag, sluggish, or irregular. Examples of these
possibilities, drawn from problems in viscous flow, are shown in Van
Dyke (1974), together with examples of zero and infinite radius of
convergence. Some useful modifications and refinements are described
by Gaunt and Guttmann (1974) in the context of the thermodynamics
of lattice models of crystals (the subject from which we have borrowed
the Domb-Sykes plot).

A quite different alternative way of investigating the nature of the
nearest singularity, and others in the complex plane, is to form ra-
tional fractions (Section 10.7), more commonly called Padé approxi-
mants, and examine the zeros of the denominator (p. 206). The use
of Padé approximants for improving series has become very popular
among physicists. Useful references are Baker (1965, 1975), Hunter
and Baker (1973), and Gaunt and Guttmann (1974).

Note 16. The Resolution of Paradoxes

The method of matched asymptotic expansions is most striking
when it resolves a long-standing paradox. D’Alembert’s paradox was
effectively resolved by Prandtl’s boundary-layer theory. At the other
extreme of low Reynolds number, the paradoxes of Stokes and White-
head, clarified by Oseen, were resolved by Kaplun (1957) using
matched expansions (Chapter 8). Without straining the definition,
we may assert that each of the three problems sketched below stood
as a paradox, “exhibiting an apparently contradictory nature,” until
resolved by the same method. Like the paradoxes of Stokes and
Whitehead, each involves logarithmic divergence at infinity in a plane
problem.

Filon’s paradox. Filon (1928) studied steady viscous flow far from a
cylinder using the Oseen approximation. In the second approximation
he found the moment on an asymmetric shape as an angular-momen-
tum integral that tended logarithmically to infinity as the contour
increased. This difficulty was resolved by Imai (1951), who showed
that the singularity in the second-order wake solution is cancelled
by the third-order inviscid solution outside the wake. (The reason-
ing is analogous to that later used by Imai for the drag of a semi-




248 Notes

infinite plate, discussed on page 138.) Chang (1961) has simplified
this resolution of Filon’s paradox by systematically applying the
method of matched asymptotic expansions.

Planing at high Froude number. Green (1936) calculated the plane
inviscid free-streamline flow for a flat plate of chord L planing on the
surface of deep water at high Froude number F = (Ug/L)¥? = 1/¢2
His approximation suffers the defect that, because gravity was
neglected, the free surface drops off logarithmically to infinity with
distance. Rispin (1966) has resolved this defect by embedding Green’s
approximation into a systematic perturbation scheme as the first term
of a local expansion, and matching to a distant expansion based on
linear wave theory. The expansion near the plate is found to involve
the logarithm of the Froude number from the second step, having
just the form of the expansion (N.6) for diffraction near a semi-
infinite plate. Ting and Keller (1974) have improved the solution by
including the impact on the free surface of the jet thrown up by the
plate.

Vortex rings. Whereas rectilinear vortices are conveniently idealized
as having concentrated cores, a curved vortex induces upon itself a
velocity that increases logarithmically with the inverse of its core
radius. Some cut-off device therefore has to be introduced to simulate
a vortex ring (Batchelor, 1967, p. 253). This difficulty was resolved by
Tung and Ting (1967), who match the outer solution for a con-
centrated ring vortex to the inner solution for a diffusing rectilinear
viscous vortex. As a result they find that as its core diffuses with the
square root of time, the speed of the vortex ring decreases logarithmi-
cally with time. Saffman (1970) has corrected some algebraic errors.

Laminar mixing. In contrast to these successes, we note that “the
riddle of the course of the viscous shear layer between two streams of
different speeds” has apparently not, as stated on page 77, been solved
by the matching of Ting (1959). Klemp and Acrivos (1972) show
that when all higher-order effects are considered the lateral position
of the mixing zone remains indeterminate by an amount of the order
of its own width. :
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SUBJECT INDEX

Accuracy of asymptotic series, 30-32
composite expansion, 97, 228
effect of logarithmic terms, 202
improvement of, 202-210
multiple scales, 242
Additive composition, 94, 190, 227, 228
Aging spring, 242
Airfoil integral, 49, 172
Airfoil theory,
singular perturbation problems, 45-76
supersonic, 106-117
Analysis of perturbation series, 243-247
Analytic continuation, 31-32, 210
Analytic method of characteristics, 228
Angle of attack, effective, 172, 173
Angles, ratio of, 83
Approximations,
irrational, 2
rational, 2
role of in fluid mechanics, 1-8
Artificial parameter, 75, 132
Asymptotic expansion, see Asymptotic series
Asymptotic form, 26, 90
Asymptotic matching principle, 64, 90, 128,
161, 186, 220-225
restricted, 221-224
Asymptotic representation, 26, 90
Asymptotic sequence,
alternative, 28, 244
choice of, 29-30, 35, 125
definition, 28
difference between inner and outer,
84, 104
logarithms in, 5, 29, 30, 33, 35, 47, 57, 59
69, 200-202, 207, 218, 220-224, 229,
235, 236, 237, 243-245
for thin-airfoil theory, 47, 73
Asymptotic series,
accuracy of, 30-32, 97, 202-210, 228, 242
complete, 237
convergence of, 27, 30-32
definition, 26
error in, 31
power series, 27
properties of, 32-34
uniqueness of, 33-34
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Asymptotic solution, 3

Axisymmetric, see Body of revolution,
Blunt-body problem, Paraboloid of
revolution

Backward influence, 38, 39, 42
Basic solution, 4, 93
Biconvex airfoil, 56-59, 68, 74, 97, 217,
224-225
Blasius series for boundary layer,
on circle, 18-19
inverse, for parabola, 41, 211
on parabola, 6, 39, 204, 208
Blasius solution for flat plate, 129-131
uniqueness, 131-132
Block matching, 74, 222
Blunt-body problem, 6, 39, 40, 203, 206,
207, 208-209
Blunted wedge in hypersonic flow,
182-192, 227
Body of revolution,
nose-correction rules for incompressible
flow, 74
paraboloid, 75, 165, 213, 239
slender-body theory, 74
spindle, 74
Boundary conditions,
discontinuities in, 42
loss of, 80, 88, 126
perturbation of, 9, 11, 13
transfer of, 36-37, 43, 47
Boundary layer
on circle, 17-19, 38, 214, 219, 219
change of coordinates, 140-145, 232-243
coordinates, 17
first-order equation, 128
on flat plate, 129-140, 142-145, 196-197.
230232 '
higher approximations, 121, 134, 136, 139
147, 233, 237, 238-239
multistructured, 230-232
optimal coordinates, 141, 144-146, 200,
232-234
in Oseen approximation, 156
—on parabola, 6, 204, 208, 211-212,
238, 239
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separation, 19, 214, 219, 220, 232,
239, 247

theory, 17, 121-147, 230-232

thickness, 127

triple deck, 230, 232

turbulent, 227

unsteady growth, 38-39, 214, 219

Change of characteristics, 42, 43-44, 228-229
Change of type, 42, 129
Characteristics, change of, 42, 43-44, 228-229
Circular cylinder, 9-20
boundary layer on, 17-19, 38, 214,
219, 219
compressible flow, 4, 15-16, 214,
215-216, 219
corrugated, 19, 217
distorted, 13-14
drag at low Reynolds number, 164,
237-238, 244
inviscid irrotational flow, 10-11
Janzen-Rayleigh approximation, 4, 15-16
at low Reynolds number, 161-164,
222-224, 226, 236, 237-238
in parabolic shear, 20, 98, 217, 217
porous, 19, 217
pulsating, 19
separation, 19, 121-122, 150, 214, 219, 236
skin friction, 18, 219
Stokes approximation, 152-153
in uniform shear flow, 11-13
viscous flow, 16-19, 152-153, 161-164,
222-224, 226, 237-238
Complementary solution, 12
Complete asymptotic expansion, 237
Composite expansion, 83-85, 98, 163,
197-198, 199
accuracy of, 97, 228
alternative rules, 227-228
for blunted wedge, 190-192, 227
construction of, 94-97, 227-228
failure of multiplicative, 227-228
Composite expansions, method of,
197-198, 213
Composition,
additive, 94-190, 227, 228
multiplicative, 96, 190, 227-228
Compressible flow, see Hypersonic flow,
Subsonic flow, Supersonic flow,
Transonic flow

Subject Index

Computer extension, 215-216, 234
Cone, circular,
perturbation of solution for supersonic
flow, 9
in slightly supersonic flow, 176-182
Conical shock wave, 100, 229
Conservation principle, global, 53
Convergence
of asymptotic series, 27, 30-32
of coordinate perturbation, 31
of expansions in powers of Reynolds
number, 234
improvement of, 202-210, 243-247
of Janzen-Rayleigh expansion, 4, 214, 219
radius of, 32, 206, 207-208, 213, 218, 234,
237, 245-246
of Stokes’s series for water waves, 216
value of, 30
Coordinate perturbation, 3
boundary layer on flat plate, 123
convergence of, 31
direct expansion, 37-40
for elliptic equations, 39-40
inverse expansion, 41-42
joining of, 210-212
nonuniformity of, 81
replacement by parameter perturbation,
82-83
singular, 82
Coordinates,
alternative, for flat plate, 142-144, 234
change of, in boundary layer, 140-145
natural, 203-204, 232-234
optimal, 141, 144-146, 200, 232-234
parabolic, 142, 203, 206, 209, 211, 230, 238
semicharacteristic, 108
semioptimal, 144, 146
shrinking rectangular, 143-144, 234
Corner on supersonic airfoil, 112-115
Correlation theorem, 142, 147, 233, 233
Corrugated quasi cylinder, 19, 217
Critical Mach number, 4, 214, 216, 219
Cumulative effect, 106, 107

D’Alembert’s paradox, 153, 247
Derivative-expansion method, 241
Direct coordinate expansion, 37-40
Disparate lengths, 81, 82, 168, 189, 198
Displacement thickness

of entropy layer, 189

Subject Index

flow due to, 132-135, 137, 138, 139
for wake of finite flat plate, 136-137
Distorted circle, 13-14
Divortex, 173
Domain of validity, 226
Domb and Sykes, graphical ratio test, 216,
218, 245-247
Double limit process, 21, 189
Drag
of circle at low Reyrolds number, 164,
237-238, 244
leading-edge, 54-56, 138

of sphere at low Reynolds number, 5, 149
161, 206, 209-210, 216, 234-235, 243

Dual solutions, 237

Eddy, behind circle and sphere, 150, 156,
159-160, 232, 235-236
behind sharp trailing edge, 232
Effective angle of attack, 172, 173
Eigensolutions
in flat-plate boundary layer, 131-132,
230, 232
in inverse coordinate expansions, 41, 42
in thin-airfoil theory, 52-54, 58, 62-67,
73, 89
Ellipsoid of revolution, 74, 192
Elliptic airfoil,
block matching, 74
composite solution, 96-97, 227-228
incompressible thin-airfoil solution,
50-52, 72
inner and outer solutions, 94
inviscid complex velocity, 73
inviscid surface speed, 52
local solution near edge, 62
shifting correction, 72-73
subsonic thin-airfoil expansion, 5
Elliptic equations,
direct coordinate expansion, 39
initial-value problem, 39
inverse coordinate expansion, 41
method of strained coordinates, 100,
118-119, 167, 229
Elliptic wing, 6, 168, 174-176, 207, 213,
239-241
Entropy layer, 182, 186-189
displacement effect, 189

Euler transformation, 32, 33-34, 207-210, 216

Exercises, comments on, 217-220

Exponentially small terms, see also
Transcendentally small terms
in asymptotic sequence, 29, 236-238

Exponential decay of vorticity, 131, 139-140,

201, 218, 229

Extension theorem, 92

Filon’s paradox, 247
Finite flat plate,
first-order boundary layer, 123-124,
129, 130
inclined, in potential flow, 169-170
inclined, in viscous flow, 232
second-order boundary layer, 136-137
skin friction, 137, 139, 231
trailing edge, 136, 230-231
triple deck, 230-232
First approximation, 4
First-order solution, 4
Flat plate in viscous flow,
alternative coordinates, 142-144, 234
alternative interpretations of Blasius
solution, 122-124
boundary-layer solution, 129-140,
142-145, 196-197
eigensolutions, 131-132, 230, 232

finite, 123-124, 129, 130, 136-137, 230-232

finite-difference solution, 230, 231
flow due to displacement thickness,
132-134
leading edge, 39, 138-139, 230
method of composite equations, 196-197
optimal coordinates, 144, 145
Oseen approximation, 165, 198
second-order boundary layer, 134-136
skin friction, 137-139, 140, 230, 231
third-order boundary layer, 139-140
Flow due to displacement thickness,
132-135, 137, 138, 139
Forbidden regions, 222-224
Free-streamline flow, 42, 232

Gauge functions, 23-28
choice of, 24-25
Generalized asymptotic expansion, see
Composite expansion
Generalized method (multiple scales), 242
General particular integral, 36, 75
Global conservation principle, 53
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Graphical ratio test of Domb and Sykes,
216, 218, 245-247
Group property, 129, 131, 146

Higher-order boundary layer, 121, 134, 136,
139, 145, 147, 233-234, 237, 238
Hyperbolic equations,
change of characteristics, 42, 43-44, 229
direct coordinate expansion, 38
inverse coordinate expansion, 41
method of strained coordinates, 100, 118,
) 167, 228-229
Hyperbolic shock wave, 183
Hypersonic flow,
blunt body, 6, 40, 206-207, 208-209
blunted wedge, 182-192, 227
boundary-layer separation, 232
similarity rule, 22, 43
Hypersonic small-disturbance theory, 22,
35, 185

“Impossible” inner problem, 85, 101, 173
Improvement of series, 202-210, 243-247
containing logarithms, 243-245
Impulsive motion,
blunt body at hypersonic speed, 40,
206-207
circle in viscous flow, 214, 219, 219
cylinder in viscous flow, 38, 214, 219
Indeterminacy, see also Eigensolutions
in boundary-layer solution, 132, 232
in inverse coordinate expansions, 41
Initial-value problem for elliptic
equations, 39
Inner and outer expansions, see Matched
asymptotic expansions, method of
Inner expansion, 64, 84
for boundary layer, 127
for boundary layer on semi-infinite flat
plate, 140
definition, 85
distinction from outer expansion, 93
for entropy layer, 187-189
for lifting wing of high aspect ratio, 172
Inner himit, 85
Inner variables, 64, 84
choice of, 85-88, 221
definition, 85
for entropy layer, 187
for lifting wing of high aspect ratio, 169

ratio to outer variables, 221
Intermediate limit, 91, 161, 226
Intermediate matching, 91-93

principle, 92-93, 161, 220
Intermediate problem, 91
Intermediate solution, 92
Intermediate variable, 91
Inverse Blasius series, 41, 211
Inverse coordinate expansion, 41-42
Irrational approximation, 2-4
Tteration, 15

advantages and disadvantages, 34-35, 235

on Stokes approximation for sphere, 155

Janzen-Rayleigh approximation,
for circle, 4, 15-16, 35, 36, 214,
215-216, 219
for parabola, 212
Jeffery-Hamel flow, 235, 237
Jet flap, 241
Joining
of coordinate expansions, 210-212
of parameter expansions, 212-213
Joukowski airfoil, 54-56

Kutta-Joukowski condition, 42, 169

Laminar mixing, 77, 248
Leading edge,
round-nosed airfoil, 52, 53, 54-56, 59-68,
71-73, 229
sharp-nosed airfoil, 56-57, 68-70, 74,
224-225
square-nosed airfoil, 57-59, 73
viscous flow over flat plate, 39,
138-139, 230
Leading-edge drag, 54-56, 138
Leading-edge thrust, 56
Least degeneracy, principle of, 86, 127
Lifting-line theory, 6, 167-176, 192, 239-241
Lighthill’s principle, 71, 99, 229
Lighthill’s rule, 61
Lighthill’s technique, see Strained
coordinates, method of
Limit matching principle, 90, 161
Limit process, 21-23
double, 21, 189
multiple, 21, 82
Limit-process expansions, 21, 226-227
Logarithms, 5, 200-202
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as gauge functions, 25

in asymptotic expansions, 5, 29, 30, 33,
35, 47, 57, 59, 68, 69, 73, 140,
160-161, 162, 200-202, 207, 218,
221-224, 229, 235, 236, 243-245

in inverse coordinate expansions, 41, 42

in lifting-line theory, 173, 176, 241

log log, 25, 29, 201

purely logarithmic case, 222, 237, 243

source of, 68, 201

relation to algebraic companion,
201-202, 221

telescoping, 223, 244

in thin-airfoil theory, 57, 59, 68, 69, 73

in viscous-flow solutions, 140, 160-161,
162, 221-224, 233, 235, 236, 237

Log log, 25, 29, 201

M?-expansion method, se¢ Janzen-Rayleigh
approximation
Mach lines, revised, 110-111
Mach number, critical, 4, 214, 216, 219
Many-variable expansion method, 241
Mass on spring, 98
Matched asymptot.. expansions, method
of, 7, 77-98
blunted wedge in hypersonic flow,
183-192, 227
circle at low Reynolds number, 161-164,
222, 226, 236, 237
failure, 213
lifting wing of high aspect ratio, 167-176,
239-241
sphere at low Reynolds number, 156-161,
221, 226, 234-236
Matching, 88-89, 89-90, 210
and principle of minimum singularity,
73, 88
of circulation in lifting-line theory, 171
theory of, 225-227
in thin-airfoil theory, 64-70
order, 93-94
to determine eigensolutions, 53
Matching condition for boundary layer,
128, 129
Matching principle, 89-90
asymptotic, 64, 90, 128, 161, 186,
220-225, 226
intermediate, 92-93, 161, 220
limit, 90, 161

Method of composite expansions, see
Composite expansions, method of
Method of matched asymptotic expansions,
see Matched asymptotic expansions,
method of
Method of multiple scales, see Multiple
scales, method of
Method of series truncation, see Series
truncation, method of
Method of strained coordinates, see
Strained coordinates, method of
Method of strained parameters, 218
Middle expansion, 82, 97, 183, 186-191, 229
Middle variable, 186
Minimum singularity, principle of, 53, 64,
65, 73, 88, 132, 158, 163
Model problem for viscous flow, 78-80,
222, 226
Multiple limit process, 21, 82, 189
Multiple scales, method of, 198-200, 213,
241-242
accuracy, 242
primitive version, 242
relation to matched expansions, 242
variants, 241-242
Multiplicative composition, 96, 190, 227
failure of, 227
Multiplicative correction,
round edges, 59-61, 74
sharp edges, 74

Natural coordinates, 203-204
Navier-Stokes equations, 124, 153, 165, 230,
231, 233, 238
Nearest singularity
from graphical ratio test, 245
nature of, 246
from Padé approximants, 247
Newton-Busemann theory, 6, 22, 23
Newtonian approximation, 43, 208
Nonequilibrium flow over wavy wall,
192-193
Nonuniformity, 33, see also Singular
perturbation problem
for blunted wedge in hypersonic flow,
185, 187
in conical flow, 83, 100, 229
of coordinate perturbations, 81
in direct coordinate expansions, 39
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for elliptic airfoil, 50

in high-aspect-ratio wing theory, 170, 176

model equation, 78-80, 222, 226

multiple, 82

physical criterion, 80-83, 168, 189

prediction of, 78

region of, see Region of nonuniformity

at sharp stagnation edge, 57

source of, 78-80

at square edge, 58

in supersonic airfoil theory, 106-109

Nonuniqueness, see also Eigensolutions

of Blasius solution for flat plate,
131-132, 230

of boundary layer on triangular wing, 232

of hypersonic boundary layer, 232

of thin-airfoil solution, 52-54

Nose-correction rules,

bodies of revolution, 74

round edge, 59-68, 71-73

sharp edge, 68-70, 74

two edges, 97

Optimal coordinates, 141, 144-146, 200
extension of, 145, 232-234
Order symbols O and o, 23-29
operations with, 25-26
relation to physical order of magnitude, 25
Osculating parabola, 56, 59-60, 63-64, 66,
67, 73
Oseen approximation, 5, 153-156
for boundary layer, 156
for flat plate, 165, 198
for paraboloid, 165, 222-223
for plane wake, 165
for sphere, 5, 135, 206, 209-210, 216, 243
Oseen expansion, 156, 157-158, 159, 165,
222-223
Oseenlet, 158,162
Outer expansion, 64
for boundary layer on flat plate, 124-126
definition, 85
distinction from inner expansion, 93
for entropy layer, 185
for lifting-line theory, 171, 173
Outer limit, 85
Outer variables, 64, 85
ratio to inner variables, 221
Overlap domain, 89, 90, 92, 220-221

Padé approximants (rational fractions),

205-207, 247

Parabola,

boundary layer, 6, 204, 208, 211-212,
238, 239
drag, 55-56
exact complex velocity, 71
Janzen-Rayleigh expansion, 212
osculating, 56, 59-60, 63-64, 66, 67, 73
Oseen and Stokes approximations, 166
potential flow, 55-56, 88
skin friction, 6, 204, 208, 213
surface speed, 60
thin-airfoil approximation, 60, 71
viscous flow, 238, 239
Parabolic coordinates, 142, 203, 206, 209,
211, 230, 238
Parabolic equations,
direct coordinate expansion, 38
inverse coordinate expansion, 41
method of strained coordinates, 100,
118-119, 167, 229
Parabolic shear, circle in, 20, 98, 217, 217
Paraboloidal shock wave, 6, 40, 203-204,
206, 208-209
Paraboloid of revolution,
potential flow, 75, 213
viscous flow, 165, 239
Paradox,
d’Alembert’s, 153, 247
Filon’s, 247
laminar mixing, 77, 248
planing at high Froude number, 248
resolution of, 247-248
Stokes’s, 77, 152, 247
Vortex rings, 248
Whitehead’s, 152-153, 247
Parameter, artificial, 75, 132
Parameter perturbation, 3
convergence of, 31
joining, 212-213
regular, 81
singular, 81-82
Parameters, method of strained, 218
Particular integral, 12, 36
finding, 36
general, 36, 75
Patching, 54, 89, 140, 211, 212
Pattern of signs, 245

Subject Index

Perturbation expansion,
examples, 4-6
regular, 6-8, 9-20, 81, 82, 215, 234, 235,
237, 243
singular, 6-8, 33, 45-76, 78, 81-82, 153,
167-193
Perturbation quantity, 2, 22-23
choice of, 22-23
Physical criterion for uniformity, 80-83, 168
Pi, series for, 202-203
Planing flat plate, 248
Plate, see Finite flat plate, Flat plate in
viscous flow
PLK method, see Strained coordinates,
method of
Poincaré expansions, 224-225
Porous circle, 19, 217
Pressure coefficient,
cone in slightly supersonic flow, 178, 182
subsonic thin-airfoil theory, 75
Primary reference length, 80, 168
Principle of least degeneracy, 86, 127
Principle of minimum singularity, 53, 64,
65, 73, 88, 132, 158, 163
Propeller, linearized supersonic theory, 36
Pseudo-transonic flow, 78, 107
Pulsating circle, 19
Purely logarithmic case, see Logarithms

Radius of convergence, 32, 206, 207-208,
213, 218, 234, 237, 245-247
Rational approximation, 2-4
Rational fractions (Padé approximants),
205-207, 247
Ratio test, graphical, 216, 218, 245-247
Rectangular airfoil, 56-59, 73
Reference length,
primary, 80, 168
secondary, 81, 82, 83, 168
Region of nonuniformity, 104
in boundary layer, 126
exponentially small, 57, 87-88
at low Reynolds number, 153-154
in thin-airfoil theory, 51, 57, 58
Regular perturbation problem, 6-8, 9-20,
81, 82, 215, 234, 235, 237, 243
Reynolds number, 16
high, 121-147, 230-232
infinite, limiting flow for, 121-122, 232
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low, 149-166, 234-236
Round edge,
local solution, 62-68
multiplicative correction, 59-61, 74
nonuniformity in thin-airfoil theory, 52,
53, 54-56, 227-228, 229
shifting correction, 71-73

Secondary reference length, 81, 82, 83, 168
Second-order boundary layer, 121, 134, 136,
147, 233, 238
Self-similar solution, 1-2, 4, 129
Semicharacteristic coordinates, 108
Scparation of flow,
incompressible, 19, 121-122, 150, 159-160,
214, 219, 232, 232, 235-236
in Stokes approximation, 235
singularity at, 220, 239, 247
supersonic and hypersonic, 232
Series expansion, 34-35
extension by computer, 215-216, 234
improvement of convergence, 202-210,
243-247
successive approximations by, 34
Series truncation, method of, 219, 236, 236
Shanks transformation, 203
Sharp edge, 56-57, 68-70, 74, 224-225
Shear flow
past circle, 11-13, 20, 98, 217, 217
past flat plate, 146-147
Shifting correction for round edges, 71-73
Shock wave on supersonic airfoil, 115-116
Shrinking rectangular coordinates,
143-144, 234
Signs, pattern of, 245
Similarity parameter, 21-22
for hypersonic flow, 22
for transonic flow, 21, 182
Similarity rule,
hypersonic, 22, 43
second-order subsenic, 76, 212
transonic, 21, 182
Singularity at separation,
steady, 239, 247
unsteady, 220
Singular perturbation problem, 6-8, 33, 45
in airfoil theory, 45-76
in coordinate perturbation, 82
at high and low Reynolds number, 153
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inviscid, 167-193
in parameter perturbation, 81-82
prediction of, 78
slight bluntness, 182
Skin {riction,
on circle, 18, 219
on finite flat plate, 137, 139, 231
on parabola, 6, 204, 208, 211-212, 213
on semi-infinite flat plate, 137-139,
140, 230
Slender-body theory, 5, 37, 74, 75
Slightly distorted circle, 13-14
Slight shear flow past circle, 11-13, 19-20,
98, 217, 217
Slip, 147
Source
distribution for airfoil, 49, 59, 71
plane, 49
Sphere
drag, 5, 149, 161, 206, 209-210, 216,
234-235, 243
higher approximations at low Reynolds
number, 159-161, 234-235
at low Reynolds number, 5, 149, 161, 226,
234-235
Oseen solution, 5, 155, 206, 209-210
pulsating, 43
second approximation at low Reynolds
number, 159-161
separation, 150, 159-160, 219, 235-236
third approximation at low Reynolds
number, 221, 234-235
Spindle, body of revolution, 74
Square edge, 57-59, 73
Standoff distance for blunt body, 6, 40,
208-209
Stokes approximation, 5
for circle, 151-152
for compressible flow, 226, 235
for flat plate, 39, 212, 230
for parabola, 166
for paraboloid, 165, 222
separated flow, 235
for sphere, 151-152
Stokes expansion, 39, 156, 159-161, 161-164,
221, 223
Stokeslet, 152, 158
Stokes’s paradox, 77, 152, 247
Strained coordinates, method of, 7, 99-120,
228-230

a posteriori application, 73, 120, 217
for blunted bodies in hypersonic flow, 192
combined with method of matched
expansions, 229-230
comparison with method of matched
asymptotic expansions, 100-101,
104-106, 118-119
for conical shock wave, 229
for elliptic and parabolic equations, 100,
118-119, 167, 229
for hyperbolic equations, 100, 118, 167,
228-229
inapplicability of, 118, 192, 229
relation to optimal coordinates, 146
resemblance to method of multiple
scales, 199
for slightly supersonic flow past cone,
177-182
for supersonic airfoil theory, 109-112
utility of, 118-119, 228-230
Strained parameters, method of, 218
Stream function,
for blunt body in supersonic flow, 39-40,
203-204, 206
for circle in plane potential flow, 10
for circle in shear flow, 12
for plane compressible flow, 183
for plane incompressible flow, 10
for slightly distorted circle, 14
straining inapplicable to, 229
for thin-airfoil theory, 73
for viscous flow near leading edge of flat
plate, 39
Subsonic flow
past body of revolution, particular
integral, 36
past circle, 4, 15-16, 214, 215-216, 219
past parabola, 212-213
past paraboloid, 75
past thin airfoil, 75-76
potential equation for, 15
second-order similarity rule, 76, 212
Successive approximations, 34-36
Supersonic flow,
airfoil theory, 106-117
past blunt body, 6, 39-40, 203, 206, 207,
208-209
past slender cone, 176-182
past slender body of revolution,
particular integral, 36
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Sweptback wing, 176, 241

Tangency condition, see Boundary conditions
Thin-airfoil theory, 5, 29, 33, 35, 45-76, 213,
218, 224-225
Trailing edge
of finite flat plate, 230-232
sharp, 232
Transcendentally small term, 34, 163, 165,
166, 218, 236-238
Transfer of boundary conditions, 36-37,
43, 47
Transonic flow, 35
pseudo-transonic, 78, 107
similarity rule, 21, 182
slender cone, 176-182
small-disturbance theory, 177
Triple deck, 230-232
Turbulent boundary layer, 227
Two-variable expansion method, 241
Type, change of, 42, 129, 229

Uniformity, physical criterion for, 80-83, 168
Uniformly valid expansion, see Composite
expansion
Uniqueness
of Blasius solution for flat plate, 131-132
of thin-airfoil solution, 52-54
Upstream influence, 129

Velocity potential
for circle in incompressible flow, 11
for circle in subsonic flow, 15-16
for plane source, 49
in subsonic flow, equation for, 15

straining inapplicable to, 229
Viscous flow
past circle and sphere, 150, 234-236
at high Reynolds number, 121-147,
see also Boundary layer
near leading edge of flat plate, 39,
138-139, 230
at low Reynolds number, 149-166, see also
Stokes approximation, Oseen
approximation
past paraboloid, 165, 218, 239
Vortex rings, 248
Vortical layer, 83, 87, 196, 229
Vorticity,
exponential decay in boundary layer, 131,
139-140, 201, 218, 229
external, effect of, 146

Wake,
axisymmetric, 166, 218, 229
of bluff body, see Eddy
of finite flat plate, 136-137, 230
plane, 165
Water waves, 216
Wedge,
blunted, in hypersonic flow, 182-192
boundary layer on, 146
potential flow past, 69
Whitehead’s paradox, 152-153, 247
Wing,
elliptic, 6, 168, 174-176, 207, 213, 239-241
of high aspect ratio, 6, 167-176, 239-241
with jet flat, 241
sweptback, 241
thickness effects, 192, 232
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